Noise Enhancement: Techniques and Applications

Reyhaneh Abdolazimi and Reza Zafarani

Syracuse University

Presenters

Reyhaneh Abdolazimi Data Lab, Syracuse University

International Conference on Data Mining

Reza Zafarani Data Lab, Syracuse University

Introduction

- Noise usually describes undesirable disturbances or fluctuations.
- Noise in Biology
 - variability in measured data when identical experiments are repeated
 - when bio signals cannot be measured without background fluctuations distorting the desired measurement.
- Real-world data is seldom clean
 - Noise in the data can create problems for deep learning and neural networks.
 - decrease the performance of neural networks
 - less generalization power during testing on real-world data

Introduction

- Noise is also the fundamental enemy for communications engineers
 - Messages can be transmitted error-free and efficiently
 - When random noise in the form of <u>electronic fluctuations corrupts</u> transmitted messages
- If everything else is ideal, then noise is the enemy.

What if not everything is ideal?

Can an ideal system always be implemented in practice?

tradeoffs between different conflicting objectives

Introduction

- Noise can improve information processing
 - non-linear systems and algorithms

Image credit: Bernard Marr

Image credit: seredaserhii

Outline

• Part I

- Part II
- Part III
- Part IV

- Signal Processing
- Image Processing
- Biology and Physics
- Expectation Maximization
- Clustering
- Markov Chains and HMM
- Benefits of Noise in Neural Networks
- Injecting Noise in Neural Networks
- Network Science
- Privacy Preservation
- Natural Language Processing

Part I

- Noise-Enhanced Signal Processing
 - Stochastic Resonance
 - Signal Detection
 - Parameter Estimation
- Noise-Enhanced Image Processing
- Noise-Enhanced Biology and Physics

Stochastic Resonance (SR)

- By Roberto Benzi in 1981
 - Explain the periodicity of Earth's ice ages
- Use in the context of signal processing
 - Image credit: Google Image credit: Yamazato Laboratory • Effect of additive noise on the detectability of the signal : signal-to-noise ratio

[Benzi et al., 1981, Gammaitoni et al., 1998, Mcdonnell et al.,2009]

Stochastic resonance

linear

Input noise

Performance

Stochastic Resonance

Performance improvement of a non-linear system by noise enhancement.

Signal Detection

- Noise-enhancement : beneficial in nonlinear detectors
 - noise ability to increase the detectability
- oise : help to detect a weak and noise : noise force cooperation between sine and noise : noise Noise : help to detect a weak sinusoid signal
- White Gaussian noise : improve the perform
 - detect a constant signal in a Gaussian mixture n

Performance Improvement of Detectors

Improving the performance of detection system through additive noise

- The stochastic resonance effect in binary hypothesis testing problem
 - both fixed and variable detectors

$$P_{D}^{y} = \int_{R^{N}} p_{n}(\mathbf{x}) \left(\int_{R^{N}} \phi(\mathbf{y}) p_{1}(\mathbf{y} - \mathbf{x}) d\mathbf{y} \right) d\mathbf{x} \\ = \int_{R^{N}} F_{i,\phi}(\mathbf{x}) p_{n}(\mathbf{x}) d\mathbf{x} = E_{n}(F_{i,\phi}(\mathbf{x})) \\ P_{D}^{y} = \int_{R^{N}} p_{n}(\mathbf{x}) \left(\int_{R^{N}} \phi(\mathbf{y}) p_{1}(\mathbf{y} - \mathbf{x}) d\mathbf{y} \right) d\mathbf{x} \\ = \int_{R^{N}} F_{i,\phi}(\mathbf{x}) p_{n}(\mathbf{x}) d\mathbf{x} = E_{n}(F_{i,\phi}(\mathbf{x})) \\ P_{D}^{y} = \int_{R^{N}} P_{n}(\mathbf{x}) \left(\int_{R^{N}} \phi(\mathbf{y}) p_{0}(\mathbf{y} - \mathbf{x}) d\mathbf{y} \right) d\mathbf{x} \\ = \int_{R^{N}} F_{i,\phi}(\mathbf{x}) p_{n}(\mathbf{x}) d\mathbf{x} = E_{n}(F_{i,\phi}(\mathbf{x})) \\ P_{D}^{y} = \pi_{1} + T_{n}(1 - P_{D}^{y}) \\ = \pi_{1} + \int_{R^{N}} (\pi_{0}F_{0,\phi}(\mathbf{x}) - \pi_{1}F_{1,\phi}(\mathbf{x})) p_{n}(\mathbf{x}) d\mathbf{x} \\ = \pi_{1} + \pi_{0}E_{n} \left(F_{0,\phi}(\mathbf{x}) - \frac{\pi_{1}}{\pi_{0}}F_{1,\phi}(\mathbf{x}) \right) \\ \int_{0}^{f_{0}=F_{0,\phi}(\mathbf{x})} \pi_{1} - \pi_{0}E_{n_{f_{0}}} \left(\frac{\pi_{1}}{\pi_{0}}J_{\phi}(f_{0}) - f_{0} \right) \\ \geq \pi_{1} - \pi_{0}G_{\phi}^{\phi} \end{aligned}$$

$$(Here transactions on signal processing, vol. 56, NO. 10, OCTOBER 2008$$

$$Solution of the stochastic resonance of the$$

Performance Improvement of Detectors

Consider a general problem with observations $x \in X$:

- H_0 and H_1 are binary hypothesis.
 - The pdfs of x under two hypothesis H_0 and H_1 are $p_0(x)$ and $p_1(x)$
- $n \in N$ is an independent additive noise with pdf $p_n(n) \in P_N$.

$$n \quad \blacksquare \quad x \quad \blacksquare \quad y = x + n \in Y$$

- Performance of detector
 - Probability of detection P_d and Probability of false alarm P_f : Neyman–Pearson
 - Probability of error P_e : Bayesian

Neyman–Pearson Framework

- To maximize the detection probability $P_d~~$ given $~P_f <= lpha$,
 - Form of the optimum noise : randomization of two discrete vectors (signals)

$$P_n^o = \lambda \delta(n - n_1) + (1 - \lambda)\delta(n - n_2)$$

where δ is a Dirac delta function, n_1 , and $\ n_2$ are appropriate noise parameters, and $\ \lambda \in [0,1]$.

Bayesian Framework

- To minimize the probability of error P_e ,
 - Optimal noise form : a single constant signal

$$P_{n,e}^o = \delta(n - n_0)$$

where n_0 is an appropriate noise parameter.

Parameter Estimation

- Improvement of nonlinear estimators' Performance: through noise injection to the input data.
- A general noise-enhanced parameter estimator
 - with both additive and nonadditive noise
 - Determines the form of the optimal noise probability density function.

Performance Improvement of Estimators

Assumptions :

- x : input signal
- θ : estimation parameter
- $\hat{\theta} = T(x)$: an estimator that guess θ from x
- n : independent noise
 - $\varsigma\;$: prespecified stochastic transform function
- y : input of estimator (noisy input)
- $r_i(\theta, \hat{\theta})$: risk function to c_n ate the performance of estimators
 - i : performance metric
 - Mean Square Error (MCF) $x \xrightarrow{} p(y \mid x, n) = \varsigma(x, n)$

Estimator

Performance Improvement of Estimators

- To achieve the constraints on risk function $r_i \leq \alpha$
 - Noises distributions that can improve the estimator performance:

$$p_n(n) = \sum_{i=1}^{I} \lambda_i \delta(n - n_i)$$

- $\lambda_i \geq 0$, $\Sigma \lambda_i = 1$.
- n_i are appropriate constant vectors (signals) corresponding to the performance goals.

Part I

• Noise-Enhanced Signal Processing

- Noise-Enhanced Image Processing
 - Dithering
 - Image Processing Applications

• Noise-Enhanced Biology and Physics

Dithering

- Adding random noise to pictures before quantization in 1962
 - make a difference between the input and output
 - randomize quantization error
 - **Dithering** technique: **Signal-processing technique**
- Effect of noise on human visual perception
 - Contrast sensitivity
 - Noise in images of letters increases the recognition sensitivity of the human

Effect of Noise on Image

Original Image

Little noise

Too much noise

No noise

"Just right" amount of noise

Image Processing Applications

- Image restoration
 - Removing impulsive noise
- Image segmentation
 - Proper detection of objects
- Image resizing detection
 - Preventing failure after JPEG compression
- Image re-sampling detection
 - Helping the compressed JPEG images

[Histace et al., 2006, Krishna et al., 2013, Nataraj et al., 2009, Nataraj et al. 2010]

Image Processing Applications

• Image enhancement:

- Improving diagnosis of brain lesions
- Accurate detection of micro-calcifications in mammograms

[Rallabandi & Roy, 2010, Peng et al., 2009, Blanchard et al. 2007]

Part I

• Noise-Enhanced Signal Processing

• Noise-Enhanced Image Processing

• Noise-Enhanced Biology and Physics

Noise-Enhanced Neuroscience and Biology

- Noise in the transmission of sensory information in neuron models
 - Investigated By Bulsara in 1991.
- Sensory system deal with weak signals
 - Timing of spiking events by applying external noise to the crayfish mechanoreceptors
 - SR : transmission of weak mechanical stimulus
 - SR : neurons in the cercal sensory system of a cricket

Noise Effects on Human Body

- Somatosensory function declines as people get older
 - Motor control
 - Detection and transmission in sensorimotor system
 - Balance performance
 - Vibrotactile sensitivity
- Visual system
 - Contrast detection sensitivity and visual motion (
- Human hearing
 - Perception, detection and discrimination of pure

25

Image credit: Razavian 2016

https://conceptdraw.com/a1840c4/preview

Human ev

Visual System

Human visual pathwa

Noise-Enhanced Quantum Physics

- Quantum noise or decoherence
 - Measure and handle Quantum noise.

Image credit: Gyongyosi 2018

Noise-Enhanced Quantum Physics

- Noise enhancement : quantum state detection or quantum state estimation
 - Decohering environment as a thermal bath with finite temperature
 - Increase in noise temperature can improve the metrological performance from the noisy qubit.

Image credit: https://journalsofindia.com/rri-scientists-find-a-new-way-for-quantum-states-estimation/

Part II

- Expectation Maximization
 - Noisy Expectation Maximization Algorithm
 - Gaussian Mixture Models
- Clustering
- Markov Chains and HMM

Expectation Maximization Algorithm (EM)

• Goal : find the maximum-likelihood estimate $\hat{\theta}$ for the pdf parameter θ • the data Y has a parametric pdf $f(y|\theta)$

$$\hat{\theta} = \arg \max_{\theta} \ell(\theta|y)$$

•
$$\ell(\theta|y) = \ln f(y|\theta)$$
 is the log-likelihood.

EM Algorithm

- Challenge: incomplete data : $\ell(\theta|y)$ complicated
 - random variable Z as hidden variable
 - $\ell(\theta|y,z)$: derive a surrogate function $Q(\theta|\theta_k)$

Expectation Step:
$$Q(\theta|\theta_k) = E_Z[\ell(\theta|y, Z)|Y = y, \theta_k]$$

Maximization Step: $\theta_{k+1} = \arg \max_{\theta} Q(\theta|\theta_k)$

Enhancing Noise to EM

- Reduction in the average convergence time
 - Additive noise : modifies the log-likelihood and its maximizer

Enhancing Noise to EM

Assumptions:

- $Q(heta| heta_*)$ is the final surrogate log-likelihood given the optimal EM estimate $heta_*$
- θ_* maximizes $Q(\theta|\theta_*)$ and $Q(\theta_*|\theta_*) \ge Q(\theta|\theta_*)$ for all θ
- N is the noise random variable with pdf f(n|y)
- $\{\theta_k\}$ is a sequence of EM estimates for θ
- $\theta_* = \lim_{k \to +\infty} \theta_k$ as the converged EM estimate for θ

An EM noise benefit occurs when

$$Q_{N}(\theta_{k}|\theta_{*}) \geq Q(\theta_{k}|\theta_{*})$$

$$(Q(\theta_{*}|\theta_{*}) - Q_{N}(\theta_{k}|\theta_{*})) \leq (Q(\theta_{*}|\theta_{*}) - Q(\theta_{k}|\theta_{*})).$$

or

Noisy Expectation–Maximization

NEM Theorem (Noisy expectation–maximization). The noise benefit for an EM estimation iteration

$$(Q(\theta_*|\theta_*) - Q(\theta_k|\theta_*)) \ge (Q(\theta_*|\theta_*) - Q_N(\theta_k|\theta_*))$$

occurs on average if

$$E_{Y,Z,N|\theta_*}\left[\ln\left(\frac{f(Y+N,Z|\theta_k)}{f(Y,Z|\theta_k)}\right)\right] \ge 0$$

Gaussian Mixture Models (GMM)

- Mixture models : common data models in EM applications
 - forms of noise in mixture models : benefit from NEM theorem

Corollary 1 of the general NEM Theorem:

$$E_{Y,Z,N|\theta_*}\left[\ln\left(\frac{f(Y+N,Z|\theta_k)}{f(Y,Z|\theta_k)}\right)\right] \ge 0 \text{ occurs if } f(y+n,z|\theta) \ge f(y,z|\theta)$$

for almost all y , z , and n.

GMM–NEM Noise Benefit Condition

• Corollary 1: conditions on the noise N that produce NEM noise benefits for mixture models.

Corollary 2 of the general NEM Theorem: Suppose $Y|_{Z=j} \sim N(\mu_j, \sigma_j^2)$ and thus $f(y|j, \theta)$ is a normal pdf. Then $f(y+n|j, \theta) - f(y|j, \theta) = \Delta f_j(y, n) \ge 0$

occurs if

$$n^2 \le 2n(\mu_j - y).$$

GMM–NEM Noise Benefit

Solutions to GMM–NEM noise benefit condition: n locates in one of the following:

$$N_j^{-}(y) = [2(\mu_j - y), 0]$$
$$N_j^{+}(y) = [0, 2(\mu_j - y)]$$

• Noise N tends to pull the data sample y away from the tails and towards the cluster of sub-population means (or locations)
GMM–NEM Noise Benefit

Part II

- Expectation Maximization
- Clustering
 - EM Clustering
 - k means
 - Arbitrary Noise Injection
- Markov Chains and HMM

EM Clustering

Assumptions:

- k clusters in the data
- $\theta_1, .., \theta_k$ are the pdf parameters for each cluster
- $\alpha_1, .., \alpha_k$ are the mixing proportions
- EM clustering uses the membership probability density function $p_Z(j|y,\Theta_{EM})$
 - as a maximum posteriori classifier for each sample y.
- The classifier assigns $\,y$ to the j -th cluster if

$$p_Z(j|y,\Theta_{EM}) \ge p_Z(k|y,\Theta_{EM})$$

for all $k \neq j$.

Noise Enhanced EM Clustering

$$EMclass(y) = \arg\max_{j} p_Z(j|y, \Theta_{EM})$$
$$p_Z(j|y, \Theta) = \frac{\alpha_j f(y|Z = j, \theta_j)}{f(y|\Theta)}$$

• For
$$\Theta = \{\alpha_1, ..., \alpha_K, \theta_1, ..., \theta_K\}$$

$$NEMclass(y) = \arg\max_{j} p_Z(j|y, \Theta_{NEM})$$

K-means Clustering

k-means clustering is a special case of the GMM–EM model.

Theorem: The Expectation–Maximization Algorithm Subsumes k-Means Clustering.

Clustering Noise Benefit

Clustering Noise Benefit Theorem. Consider the NEM and EM iterations at the kth step. Then

 $P_{M_N}[k] \le P_M[k]$

if the additive noise N in the NEM-clustering procedure satisfies the NEM Theorem condition from

$$E_{Y,Z,N|\theta_*} \left[\ln \left(\frac{f(Y+N,Z|\theta_k)}{f(Y,Z|\theta_k)} \right) \right] \ge 0$$

Effect of Noise in KMEANS Convergence Time

Arbitrary Noise Injection to NEM

Arbitrary Noise Injection NEM Theorem.

• Let $\phi(Y, N)$ be an arbitrary measurable mode of combining the signal Y with the noise N. Suppose the NEM average positivity condition holds at iteration k:

$$E_{Y,Z,N|\theta_*}\left[\ln\left(\frac{f(\phi(Y,N),Z|\theta_k)}{f(Y,Z|\theta_k)}\right)\right] \ge 0$$

Then the EM noise benefit

$$Q(\theta_k|\theta_*)) \le Q_N(\theta_k|\theta_*))$$

Holds on average at iteration k:

 $E_{N,Y|\theta_k}[(Q(\theta_*|\theta_*) - Q(\theta_k|\theta_*))] \ge E_{Y|\theta_k}[(Q(\theta_*|\theta_*) - Q_N(\theta_k|\theta_*))]$

Multiplicative Noise on a GMM

Part II

- Expectation Maximization
- Clustering
- Markov Chains and HMM
 - Markov Chains
 - Hidden Markov Models

Noise can speed convergence in Markov chain

- Assumptions
 - ${\ } \bullet \ M$ is a finite time-homogeneous Markov chain
 - \bullet with $N\,{\rm states}$
 - An irreducible and aperiodic state transition matrix ${\cal P}$
 - a stationary vector \widetilde{x}

Markov Chain Noise Benefit Theorem

A noise benefit exists for all nonstationary state density vectors x in the sense that there exists some A > 0 so that for all $a \in (0, A)$

$$[\widetilde{x}P - x^{\infty}]_i| < |[xP - x^{\infty}]_i|$$

for all states i with

$$\Delta_i = (x - x^\infty)P_i > 0$$

where

$$\tilde{x} = \frac{1}{1+a}(x+n)$$

Markov Chain Noise Benefit Theorem

$$\widetilde{x} = \frac{1}{1+a}(x+n)$$

is the normalized state vector after adding a noise vector $\ n$ with only one nonzero element

$$n_j = \begin{cases} a & j = k \\ 0 & j \neq k \end{cases}$$

for any k that satisfies $\Delta_k = (x - x^{\infty})P_k > 0.$

NEM Noise Benefit for Hidden Markov Models

- Hidden Markov Models (HMM): a probabilistic model for time series data
 - Speech processing and recognition
- NEM noise benefit : in HMM
 - Baum-Welch algorithm : a special case of the EM algorithm

Noise benefit in NHMM training

Part III

- Benefits of Noise in Neural Networks
 - Back Propagation
 - Classification
 - Regression

• Injecting Noise in Neural Networks

NEM Noise Benefit for Neural Networks

- Neural Networks also follow the NEM benefits.
 - Backpropagation algorithm : maximum likelihood estimation of a neural network's parameters

Image credit: Parmar 2018

NEM Noise Benefit for Neural Networks

5.3% decrease in the squared error per iteration for NEM-BP

Classification

• Noise benefit sufficient condition for Gibbs or Softmax activation output neurons used in $K\-$ class classification

Hyperplane Noise Benefit Condition for Feedforward Neural Networks

The NEM Theorem condition is satisfied for Maximum likelihood training of feedforward neural network with Gibbs or SoftMax activation output neurons if

$$E_{t,h,n|x,\Theta_*}\left\{n^T \log(a^t)\right\} \ge 0$$

where $\log(a^t)$ denotes the vector of log-activation of output neurons.

Hyperplane Noise Benefit Condition for Feedforward Neural Networks

Regression

- Noise benefit sufficient condition for Gaussian output neurons used in regression networks.
 - A spherical noise-benefit region in noise space for a Gaussian target data vector $t \sim N(t|a^t, I)$.

Sphere Noise Benefit Condition for Feedforward Neural Networks

The NEM Theorem condition is satisfied for Maximum likelihood training of a feedforward neural network with Gaussian output neurons if

$$E_{t,h,n|x,\Theta_*}\left\{ \left\| n - a^t + t \right\|^2 - \left\| a^t - t \right\|^2 \right\} \le 0$$

where $\|.\|$ is the L2 vector norm.

Sphere Noise Benefit Condition for Feedforward Neural Networks

Part III

• NEM Noise Benefit in Neural Networks

- Injecting Noise in Neural Networks
 - Noise Injection to Inputs
 - Noise Injection for network Weights
 - Noise Injection for network Gradients

Training with Noise

Some methods indicates convergence as a cost for improved generalization performance

• Some techniques improve both metrics at the same time

Noise Injection for Input Training

- Regularization: Controlling the tradeoff between bias and variance
 - Improve generalization
 - Adding a random vector into the input data : Tikhonov regularization

• Better estimate the optimal weight vectors

Image credit: Wallner 2017

learning & regularization

Data Augmentation

- Adding noise to the inputs of neural networks: data augmentation.
 - Small Input : adding noise to the original dataset
 - overcoming the problem of training on less data for a specific class.

Base Image

Flip

Augmented Images

Saturation

Sheer

Image credit: Segura

Noise Injection for Network Weights

- Supervised neural network generalize well
 - Amount of information in the weights be less than information in the output training vectors
 - Handling the amount of information in a weight : adding Gaussian noise to it

Noise Injection for Network Weights

Simulation of synaptic noise on multilayer perception training

- Applying noise to the weights of each layer during training
- Noise benefits : improving fault tolerance, and generalization performance

Weight Perturbation

100.0

99.5 ercentage Correct Classification 99.0 98.5 98.0 97.5 5 perturbation = 60% — perturbation = 70% … Standard Deviation perturbation = 80% perturbation = 90% perturbation = 100% - -Variations 3 the network is less susceptible to damage 2 1 0 15 20 2: noise level (%) 10 30 0 5 15 25 35 40

Noise Injection for Network Gradients

- Adding annealed Gaussian noise to the gradient during training
 - Help training and generalization of complicated neural networks
 - avoid overfitting
 - decrease the training loss : motivating active exploration of parameter space

Gradient Noise

Noise-Enhanced Optimization

- Optimization : benefit from randomness
- Random search optimization techniques may get trapped in local minima while searching for an optimum.
 - Randomization can help for searching the coarse regions of state space before searching finer regions

Genetic Algorithm (GA)

- Randomization in crossover and mutation
 - Helps avoid self-similarity in the population by avoiding local minima.
- The role of **mutation** is similar to **adding noise**
 - A suitable mutation rate can improve performance

Simulated Annealing (SA)

- Improving convergence Combinational problems like graph partitioning
- A temperature parameter T :
 - handle the randomness of the search procedure
 - The T progressively **decreases**
 - The higher the T, the higher chance
 SA accept a solution worse than the current one
- This randomness in SA : noise

Begin
Choose The best initial solution (S1)
Choose an initial temperature (T0)
Repeat
While (M <m)< td=""></m)<>
S2=Generate a neighbor of the solution S1
Delta= Objective(S1)- Objective(S2)
If Delta<0 Then
S1:=S2
Else if $exp(Delta/K*T) > Random(0~1)$ Then
S1:=S2
End if
M:=M+1
End while
T=T*alpha
Until T < Tend
End Image credit: Babaei 2019
Part IV

- Network Science
 - Network Connectivity
 - Community Detection
 - Link Prediction
- Privacy Preservation
- Natural Language Processing

Adding edges to the graphs : increase the algebraic connectivity

Assumptions:

- $G_{base} = (V, E_{base})$: a base graph
- m_c : a set of candidate edges E_{cand} on V
- $k \ (0 \le k \le m_c)$: the number of edges that results in the greatest increase in algebraic connectivity when added to G_{base}

maximize $\lambda_2(L(E_{base} \cup E))$ subject to $|E| = k, E \subseteq E_{cand}$

A greedy local heuristic solution :

- 1) find a unit eigenvector, v , corresponding to $\lambda_2(L)$ (L is the current Laplacian),
- 2) add an edge $l \sim (i, j)$ with the largest value of $(v_i v_j)^2$ to the graph.

This process continues until k edges are added to the graph.

Effect of Adding Edges on Algebraic Connectivity

Perturbation heuristic adds edges

- 1) Connects two connected components
- 2) Links nodes that most strongly belong to different components
 - Large $(v_i v_j)^2$
- 3) Connects nodes that are farthest from each other in the linear embedding

Noise Enhanced Community Detection

- Design new community detection algorithms
 - Alternative: keep the algorithm but modify the input data: network
- Motivation: Noise benefits
 - Modify data: introduce **noise**
- Introduce noise in a network: add edges

Community Detection

add a single noise edge (3, 5)

evaluate communities: edge cut=1.3

- > The same community detection method
 - **fewer** communities
 - better communities: edge cut=1

%30 decrease in edge cut

Noise Injection Framework

1. Some noisy edges are added to the graph.

2. Communities are identified in the noisy graph using the same community detection algorithm

3. The detected communities are evaluated using an objective function.

Preprocessing

- 1. Sort nodes based on their degrees,
- Select the top p percent of sorted nodes as candidates, and
 Add edges within
 - candidates

Noise Injection Methods

- 1) Random Noise: randomly choose from the candidates
- 2) Weighted Noise: degrees of candidates
- 3) Frequency Noise: degree distribution of the candidates

Experimental Setup

• Evaluation Metrics:

1) Expected First Success (EFS)

Expected number of times that we need to add noise to the network to ensure that we improve communities at least once.

Example:

• total 100 iterations

2) Relative Objective Improvement (ROM) prove communities in 34 iterations

How much we improve the objective function relatively.

Example:

Theoretical Analysis

Spectral Analysis

$$m_2 = E(d_i)E(\frac{1}{d_i d_j})$$

• Theorem: Let graph G'=(V',E') be obtained from graph G=(V,E) by connecting nodes u and v. Then,

Theoretical Analysis

Objective Function Analysis

Graph G with communities S1 and S2

 $d_i = d_{i,in} + d_{i,out}$

- 1. Theorem **Modularity** Change. If $d_{i,in} < d_{i,out}$, moving v_i from S_1 to S_2 increases modularity.
- 2. Theorem **Edge cut** Change. If $d_{i,in} < d_{i,out}$, moving v_i from S_1 to S_2 decreases edge cut.
- 3. Theorem **Conductance** Change. If $d_{i,in} < d_{i,out}$, moving v_i from S_1 to S_2 decreases conductance.
- 4. Theorem **Normalized Cut** Change. If $d_{i,in} < d_{i,out}$, moving v_i from S1 to S_2 decreases cut size.

Noise-enhanced Community Detection in Real-World Networks

$$EFS = 3$$

 Evaluate the predicted links: Average Precision=0.14 ROC=0.76 Adamic/Adar measure:

- increasing accuracy of the predicted links
- better ranking on the edges predicted

250% increase in *AP* 23% increase in ROC

Experimental Setup

Synthetic Datasets

Graph Model	Graph size (n)	Parameters
$\mathbf{Random}(n,p)$	1,000	$p \in \{0.001, 0.003, 0.006, 0.007\}$
Small-world (n, k, p)	1,000	$p \in \{0.0001, 0.001, 0.01, 0.1, 1\}, k = 10$
Configuration(deg - seq)	1,000	powerlaw $deg - seq$

Theoretical Analysis

Theorem **Common Neighbor** Score Change. Connecting two High Degree nodes can increase common neighbor score the most.

Theorem Adamic/Adar Score Charge: Connecting two HighDegree hodes can increase the Adamic/Adar Proof. There are two ways to look at this of the theorem and the common neighbor score. How we can increase CN(i, j)? This increase is possible by (1) accepted to a first of the common neighbor score.

(1) connecting neighbors x of i to j, i.e., $x \sim j$, such that $x \in \Gamma(i)$; or (2) neighbors y of j to i, Theorem Preferential Attachment Score Change Connecting two High Degree nodes can increase the select neighbors x and y such that $x, y \in HIGHDEGREE$, more nodes find common neighbor with jand i. Similarly, if $j, i \in HI$ preferential vattach mentiscore the most mon neighbor of more nodes (i.e., i and j now act as the common neighbor). Therefore, connecting two HIGHDEGREE,

 $x \sim j$ and $y \sim i$, increases common neighbor scores among more node pairs in G.

Theorem Katz Score Change In King two High Degree nodes increases Katz Score the most.

scores more compared to $i' \sim j'$. This is because the edge $i \sim j$ increases score for all CN(k, j), $k \in \Gamma(i)$ and CN(i, l), $l \in \Gamma(j)$. Similarly, edge $i' \sim j'$ increases CN(k', j'), $k' \in \Gamma(i')$ and CN(i', l'), $l' \in \Gamma(j')$. Since $|\Gamma(i)| > |\Gamma(i')|$ and $|\Gamma(j)| > |\Gamma(j')|$, $i \sim j$ can increase the common neighbor score between more nodes in G compared to $i' \sim j'$.

Noise-enhanced Link Prediction in Real-World Networks

Noise-enhanced Link Prediction in Synthetic Networks

- 1. Which link prediction measure works best under noise?
- 2. Which noise-enhanced measure performs the best for each network model?
- 3. Which type of network model in general yields better results? Which one has the worst results?

Which type of noise works best for each network model?

Which noise-enhanced link prediction measures works best for each type of graph?

Models	Parameters	Noise-enhanced link prediction methods Ranking						
$\operatorname{Random}(n,p)$	all p	$\operatorname{Katz}(1^{st})$	$\mathbf{CN}(2^{nd})$	$AA(3^{rd})$	-			
Small-world -	p <= 0.1	$AA(1^{st})$	$\mathbf{CN}(2^{nd})$	$PA(3^{rd})$	$\operatorname{Katz}(4^t h)$			
	p = 1	$\operatorname{Katz}(1^{st})$	$\mathbf{PA}(2^{nd})$	$\operatorname{CN}(3^{rd})$	$AA(4^th)$			
Configuration	Powerlaw	$\operatorname{Katz}(1^{st})$	$AA(2^{nd})$	$CN(3^{rd})$	$PA(4^th)$			

Part IV

- Network Science
- Privacy Preservation
 - Microdata Protection
 - Differential Privacy
- Natural Language Processing

Noise in Microdata Protection

- Masking approaches : main microdata protection techniques
 - Transform the original data to generate new valid data for statistical analysis
 - To preserve the confidentiality of respondents

	SSN Name Race	DoB	\mathbf{Sex}	ZIP	MarStat	Disease	DH	Chol	Temp			
Random no	Asian	64/09/27	F	94139	Divorced	Hypertension	3	260	35.2			
	Asian	64/09/30	\mathbf{F}	94139	Divorced	Obesity	1	170	37.7			
 Perturhs 	Asian	64/04/18	Μ	94139	Married	Chest pain	40	200	38.1	ttrihute	with	а
i citui b3	Asian	an $64/04/15$	\mathbf{M}	94139 Married	Married	Obesity	7	280	37.4		vvicii	u
random va	Black	63/03/13	Μ	94138	Married	Hypertension	2	190	35.3			
	Black	63/03/18	Μ	94138	Married	Short breath	3	185	38.2			
	Black	64/09/13	\mathbf{F}	94141	Married	Short breath	5	200	36.5			
	Black	64/09/07	\mathbf{F}	94141	Married	Obesity	60	290	39.8			
	White	61/05/14	Μ	94138	Single	Chest pain	7	170	37.6			
	White	61/05/08	Μ	94138	Single	Obesity	10	300	40.1			
	White	61/09/15	\mathbf{F}	94142	Widow	Short breath	5	200	36.9			

An example of de-identified medical microdata table

Random Noise

- Assumptions:
 - N : number of tuples
 - X_j is the j -th column of the original microdata table : a sensitive attribute

The uncorrelated additive random noise:

$$x_{ij} \qquad \qquad x_{ij} + \epsilon_{ij}$$

$$i = 1, ..., N \qquad \epsilon_j \sim N(0, \sigma_{\epsilon_j}^2) \qquad \qquad \sigma_{\epsilon_j}^2 = \alpha \sigma_{X_j}^2$$

• Preserves the mean and the covariance

Differential Privacy

- Goal: Minimize the probability of identifying a single record
- Common method : add random noise to the original data

Differential Privacy

- Preserve ϵ -differential privacy : add Laplacian noise
- Preserve (ϵ, δ) -differential privacy : add Gaussian noise

• Assume for
$$f: D \to R^k$$
 , the sensitivity of f is

$$\Delta f = \max_{D_1, D_2} ||f(D_1) - f(D_2)||_1$$

for all databases D_1 , D_2 differing in at most one element.

$\epsilon\text{-Differential}$ Privacy Theorem

For $f: D \to R^k$, the mechanism K_f that adds independently generated noise with distribution $\operatorname{Lap}(\frac{\Delta f}{\epsilon})$ to each of the k output terms preserves the ϵ -differential privacy.

Part IV

- Network Science
- Privacy Preservation
- Natural Language Processing
 - Random noise injection

Noise-Enhanced Natural Language Processing

- Injection of noise into a neural network : data augmentation
- Data augmentation techniques for speech data or computer vision
 - Text data has not many popular techniques for data augmentation.
 - Natural language data are difficult to process.
 - It is too hard to generate realistic textual data.

Noise-Enhanced Natural Language Processing

- Data augmentation techniques used in artificial vision to NLP
 - Involving data transformations at the data pre-processing stage
- Textual noise injection : text augmentation techniques
 - Making some changes in the texts : adding, deleting, modifying the letters in words, and changing the punctuation.

Image credit: Brett Jordan

Random Noise Injection in NLP

Spelling Errors Injection

- Generates texts containing common misspellings
- To train more robust models

Random Insertion

 Find synonym of a random word and insert that into a random position in the sentence.

Random Noise Injection in NLP

• Unigram Noising

• Perform replacement with words sampled from the unigram frequency distribution

Random Noise Injection in NLP

• Sentence Shuffling

Shuffle sentences present in a training text to create an augmented version

Conclusions

- Part I
- Part II
- Part III
- Part IV

- Signal Processing
- Image Processing
- Biology and Physics
- Expectation Maximization
- Clustering
- Markov Chains and HMM
- Benefits of Noise in Neural Networks
- Injecting Noise in Neural Networks
- Network Science
- Privacy Preservation
- Natural Language Processing

Reyhaneh Abdolazimi Data Lab, Syracuse University

International Conference on Data Mining

Reza Zafarani Data Lab, Syracuse University