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Introduction

* Noise usually describes undesirable disturbances or fluctuations.

* Noise in Biology
* variability in measured data when identical experiments are repeated

* when bio signals cannot be measured without background fluctuations
distorting the desired measurement.

 Real-world data is seldom clean

* Noise in the data can create problems for deep learning and neural networks.
* decrease the performance of neural networks
* less generalization power during testing on real-world data

3 [McDonnel et al., 2009]



Introduction

* Noise is also the fundamental enemy for communications engineers
* Messages can be transmitted error-free and efficiently

* When random noise in the form of electronic fluctuations corrupts
transmitted messages

* If everything else is ideal, then noise is the enemy.

What if not everything is ideal?

Can an ideal system always be implemented in practice?

- tradeoffs between different conflicting objectives

4 [McDonnel et al., 2009]




Introduction

* Noise can improve information processing
* non-linear systems and algorithms
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Stochastic Resonance (SR)

'y
~. Stochastic resonance
* By Roberto Benziin 1981 -
* Explain the periodicity of Earth’s ice ages &
(@
l
e Use in the context of signal processing ———

age credit: Google
Ima%e cregit: Yam%zato Laboratory

» Effect of additive noise on the detectability of the signal : signal-to-noise ratio

| Image credit: Parmar 2018
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Stochastic Resonance

Performance improvement of a non-linear system by noise

enhancement.
Suitable Amount of Noise

l

« Stochastic Resonance Peak

Output Performance

> Noise magnitude < .

Small Noise Large Noise

9 [McDonnell et al., 2009]



Signal Detection

* Noise-enhancement : beneficial in nonlinear detectors
* noise ability to increase the detectability

.

* Noise : help to detect a weak sinusoid signal | . / - AN |
» force cooperation between sine and noise : noi: *1 “dsbuion

* White Gaussian noise : improve the perfornm | w
* detect a constant signal in a Gaussian mixturen ~ * 7 il ¢t ¢

L ) Image credit: Stanialaw 19999
Decision variable 9



Performance Improvement of Detectors

Improving the performance of detection system through additive noise

* The stochastic resonance effect in binary hypothesis testing problem
* both fixed and variable detectors
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11 [Chen et al. 2007, Chen et al. 2008]



Performance Improvement of Detectors

Consider a general problem with observations z € X :

« Hy and H; are binary hypothesis.
 The pdfs of = undertwo hypothesis Hy and H; are py(x) and pi(x)

* n € N isanindependent additive noise with pdf p, (n) € Px.

N e T ‘ y=x4+neyY

* Performance of detector
* Probability of detection P4 and Probability of false alarm P : Neyman—Pearson
* Probability of error P, : Bayesian

12 [Chen et al. 2007, Chen et al. 2008]



Neyman—Pearson Framework

* To maximize the detection probability F; given P; <= «a,
* Form of the optimum noise : randomization of two discrete vectors (signals)

[ P2 =\5(n — n) H[(1 = AYo(n — na) ]

where § is a Dirac delta function, n,, and n, are appropriate noise parameters,
and )\ € [0,1] .

13 [Chen et al. 2007, Chen et al. 2008]



Bayesian Framework

* To minimize the probability of error P, ,
e Optimal noise form : a single constant signal

[ ngezd(n—no) ]

where 1o is an appropriate noise parameter.

14 [Chen et al. 2007, Chen et al. 2008]



Parameter Estimation

* Improvement of nonlinear estimators’ Performance: through noise
injection to the input data.

* A general noise-enhanced parameter estimator
e with both additive and nonadditive noise

* Determines the form of the optimal noise probability density function.

Estimation
Criterion

Estimation
Results

e

Parameter
Space
7]

Observation
Space
y

Image credit: Wu 2019

15

[Chen et al. 2008]



Performance Improvement of Estimators

Assumptions :
* £ :input signal
0 : estimation parameter
§ = T(z) : an estimator that guess 6 from
" :independent noise
* ¢ : prespecified stochastic transform function
Y :input of estimator (noisy input)
i (0, 9) : risk function to € 'T‘L"'ate the performance of estimators

e 7 :performance metric

eV
. Mean<Seasare Errasddcs
N E—rtrp(y]a:,n)zdaz,n) _ - Estimator ——}@H

16 [Chen et al. 2008]



Performance Improvement of Estimators

* To achieve the constraints on risk function r; < «
* Noises distributions that can improve the estimator performance:

pn(n) = Z

-

\_

~N

)\@-‘(5 (n —n;)

1=1

J

AN >0, 2N =1.

T; are appropriate constant vectors (signals) corresponding to the performance goals.

17

[Chen et al. 2008]
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Dithering

* Adding random noise to pictures before quantization in 1962
* make a difference between the input and output
* randomize quantization error
* Dithering technique: Signal-processing technique

e Effect of noise on human visual perception
* Contrast sensitivity
* Noise in images of letters increases the recognition sensitivity of the human

19 [Roberts et al., 1962, Sasaki et al.,2006, Piana2000]



Effect of Noise on Image

Original Image

Little noise

Too much noise

(d)

20

No noise

“Just right”” amount of noise

[Chen et al. 2014]



Image Processing Applications

* |[mage restoration
* Removing impulsive noise

* Image segmentation
* Proper detection of objects

* Image resizing detection
* Preventing failure after JPEG compression

* Image re-sampling detection
* Helping the compressed JPEG images

-----------------

e-bloc!
- After Adding Gaussian Nolse
- it

[Histace et al., 2006, Krishna et al., 2013, Nataraj et al.,

= 2009, Nataraj et al. 2010]



Image Processing Applications

* Image enhancement:

* Improving diagnosis of brain lesions
e Accurate detection of micro-calcifications in mammograms

A

s s s EREEEYOC

.1 b ity yo

(b) (c)

[Rallabandi & Roy, 2010, Peng et al., 2009, Blanchard et al.
= 2007]
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Noise-Enhanced Neuroscience and Biology

* Noise in the transmission of sensory information in neuron models
* Investigated By Bulsara in 1991.

e Sensory system deal with weak signals i

* Timing of spiking events by applying external noise to the crayfish
mechanoreceptors

* SR : transmission of weak mechanical stimulus

1
* SR : neurons in the cercal sensory system of a cricket |-

{

o,

Image credit: jﬁhnson 2015 \
Image credit: https://www.e2f.com/blog

24 [Bulsara et al., 1991, Douglass et al. 1993, levin et al., 1996]



Noise Effects on Human Body

e Somatosensory function declines as people get older
* Motor control

E— Image credit: Razavian 2016

Wisual Systemn

Hurnan visual pathvey Hurnan eye

* Detection and transmission in sensorimotor system .-

* Balance performance
* Vibrotactile sensitivity

* Visual system
* Contrast detection sensitivity and visual motion «

* Human hearing
* Perception, detection and discrimination of pure  ooivens  orsal Hand

proximal to proximal to
Index finger ~ Thumb ImagBa9E fIeET a5 Rg 2005

[Priplata et al., 2002, mendez et al., 2012, Dettmer et al., 2015,

25 Liu et al., 2002]



Noise-Enhanced Quantum Physics

e Quantum noise or decoherence
e Measure and handle Quantum noise.

gMn communication over qubit
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26 [bowen et al., 2006, bowen et al., 2004 ]



Noise-Enhanced Quantum Physics

* Noise enhancement : quantum state detection or quantum state
estimation

* Decohering environment as a thermal bath with finite temperature

* Increase in noise temperature can improve the metrological performance from the noisy
qubit.

\ |/

Two-mode
detector

\[ ‘/ After detection
v

A D

Image credit: https://journalsofindia.com/rri-scientists-find-a-new-way-for-quantum-states-estimation/ Image credit: Yokoyama 2019

27 [Chapeau-Blondeau 2015, Gillard et al., 2018]
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* Noisy Expectation Maximization Algorithm
* Gaussian Mixture Models

* Clustering

e Markov Chains and HMM



Expectation Maximization Algorithm (EM)

* Goal : find the maximum-likelihood estimate 0 for the pdf parameter ¢
* the data Y has a parametric pdf f(y|0)

{é — arg mgxx 0(0|y) ]

* {(0ly) = In f(y|#) is the log-likelihood.



EM Algorithm

* Challenge: incomplete data : /(6|y) complicated
* random variable Z as hidden variable
« ((0ly, z) : derive a surrogate function Q(6|0;)

-

\_

Expectation Step: Q(0|0x) = E4[£(0|y, Z)|Y = y, 0]

Maximization Step: 0,1 = arg maxg Q(0|0x)

~

J

30

[Osoba et al., 2013]



Enhancing Noise to EM

* Reduction in the average convergence time
* Additive noise : modifies the log-likelihood and its maximizer

-

\_

Q(016k) In f(y, Z|6)
L L )
Expectation Step:| @n(0|0k) = Ez)y 0, In f(y + NV, Z|0))
Maximization Step: 01 v = arg maxq Qn (9]0 )
J

31

[Osoba et al., 2013]



Enhancing Noise to EM

Assumptions:

« Q(010.) isthe final surrogate log-likelihood given the optimal EM estimate 0,
* ), maximizes Q(0]6,) and Q(0.|0.) > Q(0|0,) forall 6

* N isthe noise random variable with pdf f(n\y)

« {01} is a sequence of EM estimates for 6

e 0, =1limg_, - Or asthe converged EM estimate for 0
An EM noise benefit occurs when

Qn(0x|0x)

1V

or

32

[Osoba et al., 2013]



Noisy Expectation—Maximization

mEM Theorem (Noisy expectation—maximization). The noise benefit fo)
an EM estimation iteration

occurs on average if

Ey. 7z No. [lﬂ (f(
\_

Y + N, Z|0)
Tz ) 2

/

33 [Osoba et al., 2013]




Gaussian Mixture Models (GMM)

« Mixture models : common data models in EM applications
* forms of noise In mixture models : benefit from NEM theorem

~

By, | In (L5505 ) | 2 0 oceurs if £(y +n,216) = f(y,2(6)

Corollary 1 of the general NEM Theorem:

\for almost ally, z , and n. j

34 [Osoba et al., 2013]




GMM-NEM Noise Benefit Condition

* Corollary 1: conditions on the noise N that produce NEM noise
benefits for mixture models.

éorollary 2 of the general NEM Theorem: \
Suppose Y|z—; ~ N(u;,07) andthus f(y|j,0) isanormal pdf.

o

Then

occurs if

fy+nl5,0) — f(yls,0) = Afi(y,n) =0

n? < 2n(p; —y). Y

35 [Osoba et al., 2013]



GMM-NEM Noise Benefit

Solutions to GMM—-NEM noise benefit condition:

the following:

~

n locates in one of

* Noise N tends to pull the data sample y away from the tails and towards

the cluster of sub-population means (or locations)



GMM-NEM Noise Benefit

Average
Convergence Time

10.5+

[ mn\ """""" """""" """ i/—-l

9.5+

9.0+

8.5+

8.0-F I Optimal NEM speed-up : 27.2%

1.5+

o n Initial Noise
Std. Deviation

[ [ R SR P - - | , | , ! R
i | } f ; -— | i | | i —

2.8 3.2 3.6 4.0

[Osoba et al., 2013]
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* Expectation Maximization

* Clustering
 EM Clustering
 kmeans
* Arbitrary Noise Injection

e Markov Chains and HMM



EM Clustering

Assumptions:
. k clusters in the data

« 01,..,0; arethe pdf parameters for each cluster

e (1,.., @ arethe mixing proportions
* EM clustering uses the membership probability density function pz(Jj|y, © e )

as a maximum posteriori classifier for each sample Y .
* The classifier assigns Y to the 7-th cluster if

pz(J|y, ©em) > pz(kly, OpM)
[ ]

forall k #£ j.

39 [Osoba et al., 2013]



Noise Enhanced EM Clustering

2 . )
EMclass(y) = arg mJaJX[QOZU ly, @EM]

| ~a; f(ylZ =3,0;) >
PO =T ey

\_

* For © = {041, ey, O, 01, ...,QK}

[ NEMeclass(y) = argmaxpz(jly, Onewm) ]
7

40 [Osoba et al., 2013]



K-means Clustering

k-means clustering is a special case of the GMM—-EM model.

4 D
Theorem: The Expectation—Maximization Algorithm Subsumes k-Means

kCIustermg.

V.

41 [Celeux et al., 1992; Hathaway, 1986, Osoba et al.,2013].



Clustering Noise Benefit

Clustering Noise Benefit Theorem. Consider the NEM and EM iteratich
at the kth step. Then

Py k] < Py lk]

if the additive noise N in the NEM-clustering procedure satisfies the
NEM Theorem condition from
> 0 j

42 [Osoba et al., 2013]

k By, 7z Ny, [ln (f(};(;];”i‘)gk) )]




Effect of Noise in KMEANS Convergence Time

Average
Convergence Time

85

8.0 +

[ s

7.0 +

6.5 +
I convergence time falls by about 22%

6.0 -

5T Initial

| | | | E | | .
T | | | =045 I — Gaussian

0.00 0.10 0.20 0.30 0.40 0.50 0.60 Noise o

43 [Osoba et al., 2013]



Arbitrary Noise Injection to NEM

ﬁrbitrary Noise Injection NEM Theorem. \

e Let ¢(Y,N) be an arbitrary measurable mode of combining the
sighal Y with the noise N. Suppose the NEM average positivity
condition holds at iteration k:

Ey z N, [ln (f(
Then the EM noise benefit

¢(Y,N), Z|0)
£(Y, Z|0r) )] >0

Holds on average at iteration k:

\ En,yvi0, [(Q(04]0x) — Q(0k]0+))] = Evo, [(Q(0]6:) — QN(‘%’Q*W

44 [Osoba et al, 2016]




Multiplicative Noise on a GMM

Multiplicative noise (m-NeM) benefit Blind Multiplicative Noise
Average
B Itere_rtions ﬂ?t\;er_::?:ns
_’10.&-. .Sy
= | & B o
L N, | 05 =2 2
3 N | 05 2 2
9.0- 1.0
8.01 10.5+
—p
. ey owinitA ,- , . . . oy Initial
0.04 0.20 036 o, 052 0.68 Noise Std. Dov. ' 02 04 08 08 1/ Noise Std. Dev.
0.44
Optimal NEM

Increasement in the average number of iterations

speed-up : 27.6%

45 [Osoba et al, 2016]
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* Expectation Maximization
* Clustering

e Markov Chains and HMM

 Markov Chains
e Hidden Markov Models



Noise can speed convergence in Markov chain

* Assumptions
e M is afinite time-homogeneous Markov chain
e with [V states
* An irreducible and aperiodic state transition matrix P
* a stationary vector T

47



Markov Chain Noise Benefit Theorem

ﬂ noise benefit exists for all nonstationary state density vectors x im
the sense that there exists some A > 0 sothatforall a € (0, A)
[zP —z™i| <|[[zP — z™];]
for all states ¢ with
A; = (x—x)P;, >0
where

P

T = ! (x +n)

k 1 +a /

48 Franzke et al., 2011




Markov Chain Noise Benefit Theorem

a F=——(z+n) N

1+a

is the normalized state vector after adding a noise vector n with
only one nonzero element
a j==k
’I’Lj = )
{0 ] #k

forany k thatsatisfies A, = (x — 2°°)P, > 0.

\_ /

49 Franzke et al., 2011




NEM Noise Benefit for HiIdden Markov
Models

* Hidden Markov Models (HMM): a probabilistic model for time series

data
* Speech processing and recognition

* NEM noise benefit : in HMM
* Baum-Welch algorithm : a special case of the EM algorithm



Noise benefit in NHMM training

-4 component GMM
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ad
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Audhkhasi et al., 2013
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* Benefits of Noise in Neural Networks
e Back Propagation
* Classification
* Regression

* Injecting Noise in Neural Networks



NEM Noise Benefit for Neural Networks

 Neural Networks also follow the NEM benefits.

* Backpropagation algorithm : maximum likelihood estimation of a neural
network’s parameters

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3
W<, LA RS SZ77

N7 ’lvll///“\\§-\!\§ ze,
NSRS

kpropagation

RS Xy
iz .‘It‘\“\"'§ X

2t

LN Z
= 0=
57 25

\

X
X XX A 7
TN &y REAES
TN 2SN D Y
= R\ Ll ES NN AL L PES NN
NOZZLZNNWNOZZN 7

%}“\\\\{ = w”"“\\\( -/ ll”"“‘ ~\
— N\ N N

Figure 12.2 Deep network architecture with multiple layers.

O

Image credit: Google

Image credit: Parmar 2018

53 [Audhkhasi et al., 2013]



NEM Noise Benefit for Neural Networks

5.3% decrease in the squared error
per iteration for NEM-BP

Training set squared error

i i 1 L i i i .
2 3 4 5 6 7 8 9 10
Iteration number

54 Audhkhasi et al., 2013



Classification

* Noise benefit sufficient condition for Gibbs or Softmax activation
output neurons used in K-class classification

* Assumptions: CLASSIFICATION IN MACHINE LEARNING
ez and h
e Y isthe K-val

Image credit: Sharma 2020



Hyperplane Noise Benefit Condition for
~eedforward Neural Networks

ﬁhe NEM Theorem condition is satisfied for Maximum Iikelihooh
training of feedforward neural network with Gibbs or SoftMax
activation output neurons if

Et,h,n|x,@* {nT log(at)} > 0

where log(a') denotes the vector of log-activation of output neurons.

. _/

56



Hyperplane Noise Benefit Condition for
~eedforward Neural Networks

Noise sphere

57

Audhkhasi et al., 2013



Regression

* Noise benefit sufficient condition for Gaussian output neurons used

in regression networks.

* A spherical noise-benefit region in noise space for a Gaussian target data

vector ¢t ~ N(t|a", I).

v linear

non-linear

|
Image credit: Scott 2018



Sphere Noise Benefit Condition for
Feedforward Neural Networks

ﬁhe NEM Theorem condition is satisfied for Maximum Iikelihocb
training of a feedforward neural network with Gaussian output neurons
if

Brnnioso.{ I —a + 1 = la* = 1]} <0

where ||.|| isthe L2 vector norm.

\_ /

59



Sphere Noise Benefit Condition for
Feedforward Neural Networks

Lerre-Copteriem=t=al.

60 Audhkhasi et al., 2013



Part [l

e NEM Noise Benefit in Neural Networks

* Injecting Noise in Neural Networks

* Noise Injection to Inputs
* Noise Injection for network Weights
* Noise Injection for network Gradients



Training with Noise

Some methods indicates convergence as a cost for improved
generalization performance
« Some techniques improve both metrics at the same time

Input layer| | a Hidden layers
? 3

L @

Input 1 ‘ //“\\'//n \
i ] A i'§$"i®‘ __ ()ut.pm 1 .
nput ' N/ ] Validation
B N

’ “""g : X% :

“' h ()ut‘put n Training
— Epochs

: Baeldung 2021

62



Noise Injection for Input Training

* Regularization: Controlling the tradeoff between bias and

variance
* Improve generalization

« Adding a random vector into the input data : Tikhonov regularization

« Adding noise to the training dats
 Better estimate the optimal weight

| O
ve

F feedforwe
Glors | ..

rd neural 1

earning & regularization

network

Underfitting

Overfitting

Balanced

Image credit: Wallner 2017




Data Augmentation

* Adding noise to the inputs of neural networks: data augmentation.
* Small Input : adding noise to the original dataset
* overcoming the problem of training on less data for a specific class.

Augmented Images

Base Image Saturation Sheer

Image credit: Segura

64 [Goodfellow et al., 2016]



Noise Injection for Network Weights

* Supervised neural network generalize well

 Amount of information in the weights be less than information in the output
training vectors

* Handling the amount of information in a weight : adding Gaussian noise to it

Inputs Weights

* Weight noise simplifies the ne - L 4

> W

* Reduces the information requir * ' o

> W = - | a

* Generalization improvement T 5 ) 4o .

Image credit: Deshpande 2020



Noise Injection for Network Weights

Simulation of synaptic noise on multilayer perception training
* Applying noise to the weights of each layer during training
* Noise benefits : improving fault tolerance, and generalization performance

Mean Learning Time (epochs)

10 20 30 40 50

Noise Level (%)




Weight Perturbation
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67 [Murray & Edwards, 1994]



Noise Injection for Network Gradients

* Adding annealed Gaussian noise to the gradient during training

* Help training and generalization of complicated neural networks

 avoid overfitting

* decrease the training loss : motivating active exploration of parameter space

J(w)

A

Imgal ! Gradient
weight \ b
II
J! |
!
'I
Py A Global cost minimum

& W)

>

wW Image credit: Ciaburro 2017

68 [Neelakantan et al., 2015]



Gradient Noise

Train Loss: Noise Vs. No Noise ll:“]Test Accuracy: Noise Vs. No Noise
T

3500
===  no noise --- no noise | {4
3000 === noise _ gol| -~ noise r.
1
B :
@ 2500 = 60 '
2 E '
.g - k
& 2000 - T 40} !
2 o ;
'\* I l,’# v v
1500¢ LR A ] 207 ;,';;:;-'_‘.'.‘:!'."-ﬂf:--'ﬂ* Y LT
v ""hu-w*r-
10["] ' A1 L 'l L “ ] i L 'l 1
0 50 100 150 200 250 300 ] 50 100 150 200 250 300
No. of epochs

MNo. of epochs

69 [Neelakantan et al., 2015]



Noise-Enhanced Optimization

* Optimization : benefit from randomness

e Random search optimization techniques may get trapped in local
minima while searching for an optimum.

 Randomization can help for searching the coarse regions of state space
before searching finer regions

ll :
': w:ssg:%:o.o,
I%%I'I “’:3‘1?;:2‘:%3:0
" ﬂ”l’l’l[ " /I 0;:3.:\777/
- 'o'//r;;:m 7

\\ \\

__— Image credit: A. Amini 2018

70



Genetic Algorithm (GA)

e Randomization in crossover and mutation

* Helps avoid self-similarity in the population by avoiding local minima.

* The role of mutation is similar to adding noise
* A suitable mutation rate can improve performance

Crossover

Image credit: Fernandez 2017

1

1

0

1

0

4
10

0

1

0
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Image credit: Rajan 2021

[Tang et al., 1996, Chen et al., 2014]



Simulated Annealing (SA)

. Begin
* [mproving convergence Choose The best initial solution (S1)
Combinational problems like graph partitioning ;2;2::“mma“emperamre(m
. While (M<m)
* A temperature parameter T ) S2=Generate a neighbor of the solution S1
* handle the randomness of the search procedure Delta= Objective(S1)- Objective(S2)
. If Delta<0 Then
* The T progressively decreases S1:=52
e The hlgher the T, the hlgher chance Else if exp(Delta/K*T) > Random(0~1) Then
S1:=S2
SA accept a solution worse than the current one End if
M=M+1
* This randomness in SA : noise End while
lT=T*a1pha|
Until T <Tend
End Image credit: Babaei 2019

29 [Kirkpatrick et al., 1983, Chen et al., 2014]



Part IV

* Network Science
* Network Connectivity
* Community Detection
* Link Prediction

* Privacy Preservation

* Natural Language Processing



Noise-Enhanced Graph Connectivity

Adding edges to the graphs : increase the algebraic connectivity

[ Algebraic connectivity of the graph]

U

[ Second smallest eigenvalue A3(L) ]

74 [Gosh & Boyd 2006]



Noise-Enhanced Graph Connectivity

Assumptions:
e Ghase = (V, Epgse) : a base graph
e Mec : asetof candidate edges Feang on V

e k(0<k<m.) :the number of edges that results in the greatest increase
in algebraic connectivity when added to  Gpgse

-
maximize Ao(L(Epqse U E)) h

subject to |E| =k, E C E.qng
\_ J

75 [Gosh & Boyd 2006]



Noise-Enhanced Graph Connectivity

A greedy local heuristic solution :

1) find a unit eigenvector, v , corresponding to Ax(L) (L is the current
Laplacian),

2) add anedge [ ~ (i,5) with the largest value of (v; — Uj)2 to the graph.

This process continues until k edges are added to the graph.



Effect of Adding Edges on Algebraic Connectivity

Ao(L) = 0.41
k= 150

{Jm I ] --:..'..,-l:'.':.'.'_:'."-' """"""""""""
0.035F
0031
. Doz5f
&
™
™~ 0.02F
0.015¢ O - Perturbation heurigtic
i —+— Random addition
0. Y
' |
G.U-DEW:::::::,.':: frebiert
A randomly generated graph with 1000 nodes, 5517 edges, and m. = 2341. 20 40 60 80 100 120 140

77

Number of edges added, k

[Gosh & Boyd 2006]



Noise-Enhanced Graph Connectivity

Perturbation heuristic adds edges
1) Connects two connected components
2) Links nodes that most strongly belong to different components
* Large (U,; — vj)2
3) Connects nodes that are farthest from each other in the linear embedding



Noise Enhanced Community Detection

* Design new community detection algorithms

 Alternative: keep the algorithm but modify the input data: network

e Motivation: Noise benefits

* Modify data: introduce noise

* Introduce noise in a network: add edges

79
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Image credit: Rozemberczki 2020

[Abdolazimi & Zafarani 2020]


https://github.com/benedekrozemberczki

Community Detection

(b) noisy graph

(a) original graph

add a single noise edge (3, 5)

evaluate communities: edge cut=1.3 > The same community detection method

* fewer communities
* better communities:

%30 decrease in edge cut

80 [Abdolazimi & Zafarani 2020]



Noise Injection Framework

1. Sort nodes based
1. Some noisy edges are added to the graph. on their degrees,
Select the top p
percent of sorted

nodes as

2. Communities are identified in the noisy graph using the same community

candidates, and
3. Add edges within
candidates

detection algorithm

81



Noise Injection Methods

1) Random Noise: randomly choose from the candidates

2) Weighted Noise: degrees of candidates

3) Frequency Noise: degree distribution of the candidates



Experimental Setup

* Evaluation Metrics:
) Expected number of times that we need to add noise to the
1) Expected First Success (EFS) network to ensure that we improve communities at least once.

Example:
e total 100 iterations

2) Relative Objective Improvemgnt (RdEQE_rgve communities in 34 iterations

ROI=10%

83 [Abdolazimi & Zafarani 2020]



Theoretical Analysis

* Spectral Analysis

ma = E(d)E(7.r)

* Theorem: Let graph G'=(V',E’) be obtained from graph G=(V,E) by
connecting nodes u and v. Then,

mh — me = 2 (1 =F. Q,(M\— B (Zut L)
: 2 ; dy +t ) [Aot 1) - T X TTT T Uy 77
Two disconnected high degree node? are’more likely to be in diffeFent subsets of the miflimum cut.

¥

Our noise-enhanced method increases the chance of re-partitioning

84 [Abdolazimi & Zafarani 2020]



Theoretical Analysis

Objective Function Analysis

Graph G with communities S1 and S2 d; = di,in + di,out

1. Theorem Modularity Change. If d;;, < d,
increases modularity.

2. Theorem Edge cut Change. If d;;, < d,
decreases edge cut.

3. Theorem Conductance Change. If d,;, < d,
decreases conductance.

4. Theorem Normalized Cut Change. If d;;, < d,
decreases cut size.

moving v; from S, to S,

L,out’

i out? moving v; from §; to §,

moving v; from S, to S,

L,out’

moving v; from S1 to §,

L,out’

85 [Abdolazimi & Zafarani 2020]



Noise-enhanced Community Detection in Real-
World Networks

| EFs

Expected
First
Success

{EFS‘cnnduc tanm:}

detected in HepPH

Conductance of communities

1 ROI

Relative
Ohjective
Improvement

(ROLe g ductance!

1

Random Weighted Frequency
00 T+ 20 10
B0 - t : 15 5
Iﬂ{" | i |I .I 6 |
R 1 10
4{" B i + 4 B
F R
20 + J 2+¥ cesod €
0 x .'.l-'"F STt i} 1 | 1
0 20 40 &0 B0 100 0 20 40 &0 &0 100
candidate size (p) candidate size (p) candidate size (p)
——— lowvain - + - Leading EigenVector Fastliresdy Walk Trap
Random Weighted Frequency
a0 30 30
+ e
21 T y '
'II 2{" I ":\ + * Eﬂ [~ I1. e I“"\ r’
40 | - T '\-_‘_ =+ - - +
._:ﬂ_.H,!I ;l-: 10 o + 10
BN, L B
oL@ ed + T+ y L i ]

0 20 40 o0 BO 100

candidate size (p)
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Noise-Enhanced Link Prediction

A ° ...--'__1 m

e = : = . ° <- ° o .
' o ¢ / = N 57 4 B & W o
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
(a) original graph [ (b) noisy train graph
add a single noise edge (2, 6)
= Evaluate the predicted links: =  Adamic/Adar measure:
Average Precision=0.14 " increasing accuracy of the predicted links
ROC=0.76 = better ranking on the edges predicted

250% increase in AP
23% increase in ROC

87 [Abdolazimi & Zafarani 2021]



Experimental Setup

= Synthetic Datasets

Graph Model Graph size (n) Parameters

Random (1, p) 1,000 [p € {0.001,0.003,0.006,0.007}]
Small-world(n, k, p) 1,000 p € {0.0001,0.001,0.01,0.1,1}, k = 10
Configuration(deg — seq) 1,000 powerlaw deg — seq

88



Theoretical Analysis

Theorem Common Neighbor Score Change. Connecting two High Degree nodes can increase common
neighbor score the most.

Theomw&%kMP%%mﬁggrﬂ%écﬁﬁgﬁfd-H%mﬂé@fﬁé?@ AEAEd Cantrerease tE Ad4mit/Adar

crease common neighbor score
Proof. There are two ways to look at thlécgﬁgghgdﬁlﬁQ§Lr adding edges between pairs of nodes to
mmcrease the common neighbor score. How we can 1ncrease V(2. 7)¢ 1S 1ncrease 1S possible by
(1) connecting neighbors = of 7 to j, i.e., @ ~ 7, such that = € 17(7); or (2) neighbors y of j to 4,
Theerem Preferential AttachmentScerne Change.Gonnesting:twoellighRegree nodescandasreasedhe
select neighbors x and y such that =,y € HIGHDEGREE, more nodes find common neighbor with 7
and 7. Similarly, if j,« € Hiqgreferentialvattachmentscorethearostmon neighbor of more nodes
VS . | . — . 11 N o . e i . S R
ot

Ao T ')‘: Cl-lll..]_ 4y f:\ j.lllJl CadCd CulLLiiiel1l llﬁiy)lll)ul DULLULCEDS Alllully 11101 C llU(.—lU ]_.JE.LiJ.D i.J_J_ 's_)".

TREGTEMY KAtz Store ChanBelTKiHg tivg HighDegrea hodestieredssys Kat2 SEoTe thE Tigstes:
(Canaider 7 a2 — TC1H KR K and 3’ Tt | M g = 3 W) B) then 72 ~ 4 increaces comimnn neiohhaor
scores more compared to 7 ~ j’. This is because the edge i ~ j increases score for all CN(k, 7).
k € I'(z) and CN(4,01), I € I'(j). Similarly, edge i ~ j’ increases CN (K", j7"), k' € I'(z") and
CN@G@ ), U € I'(F"). Since |I'(2)] > |L'(7")| and [I'(5)] > |L(j")], © ~ j can increase the common
neighbor score between more nodes in ' compared to i’ ~ j'.

i — RN P I R - o S B I N e .
R T e e e e e B e A e e e S e e e

89 [Abdolazimi & Zafarani 2021]



Noise-enhanced Link Prediction in Real-World

Networks
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Noise-enhanced Link Prediction in Synthetic
Networks

1. Which link prediction measure works best under noise?

2. Which noise-enhanced measure performs the best for each
network model?

3. Which type of network model in general yields better
results? Which one has the worst results?



Which type of noise works best for each network
model?

Models Parameters Noise Priority Ranking
all p Random(1%%) Weighted (2"?) | | Frequency(3"%)

- p<=0.1 v Ea@EN Weighted(2"*) ~ Random(3"%)

p=1 Random/(1%?) Frequency(Q”d) Weighted(Q”d)
Powerlaw  [RNCEINERICEONN [Frequency(2"?)| | Random(3™)

92 [Abdolazimi & Zafarani 2021]



Which noise-enhanced link prediction measures works
best for each type of graph?

Models
Random(n, p)

Small-world

Configuration

Parameters

all p

Powerlaw

Noise-enhanced link prediction methods Ranking

ARl CIN(2%) AA(S“‘I)

VNGEORN CN(2"%) PA(3™) Katz(élth)
CAEROl PA(2"4) CN(37%) AA(4th)
AR AA(2"Y) CN(37%) PA(4'h)

93 [Abdolazimi & Zafarani 2021]



Part IV

* Network Science

* Privacy Preservation
* Microdata Protection
 Differential Privacy

* Natural Language Processing



Noise in Microdata Protection

* Masking approaches : main microdata protection techniques

* Transform the original data to generate new valid data for statistical analysis
* To preserve the confidentiality of respondents

SSN Name Race DoB Sex ZIP MarStat Disease DH Chol Temp

[ Ra N d om no Asian 64/09/27 F 94139 Divorced Hypertension 3 260 35.2
Asian 64/09/30 F 94139 Divorced Obesity 1 170 37.7
° P rtur Asian 64/04/18 M 94139 Married Chest pain 40 200 38.1 ttri t Wl h
ertu bS Asian 64/04/15 M 94139 Married Obesity 7280 374 bu € t a
random V¢ Black 63/03/13 M 94138 Married Hypertension 2 190 35.3

Black 63/03/18 M 94138 Married Short breath 3 185 38.2
Black 64/09/13 F 94141 Married Short breath 5 200 36.5

Black 64/09/07 F 94141 Married Obesity 60 290 39.8
White 61/05/14 M 94138 Single Chest pain 7170 376
White 61/05/08 M 94138 Single Obesity 10 300 40.1

White 61/09/15 F 94142 Widow  Short breath 5 200 36.9

An example of de-identified medical microdata table

95 [Brand 2002, Domingo-Ferrer et al. 2004, Ciriani 2007]



Random Noise

* Assumptions:
N :number of tuples
* X, is thej -th column of the original microdata table : a sensitive attribute

The uncorrelated additive random noise:
(o) e (o]

[ 1= 1,...,N] [ej ~ N(O,a?j)] [J?j = ozag(-j]

* Preserves the mean and the covariance

96 [Ciriani et al. 2007]



Differential Privacy

* Goal: Minimize the probability of identifying a single record

e Common method : add random noise to the original data

Secure environment
e Th

Query
Personal | q¢——p 0 -« - -

Differentially-private Dolsyresiit
computation

N L\

Image credit: Brett Jordan

97 [Dwork 2006, Dwork 2008]



Differential Privacy

* Preserve e-differential privacy : add Laplacian noise
* Preserve (¢, 0)-differential privacy : add Gaussian noise

* Assume for f: D — RF ,the sensitivity of fis

[Af = maxp, p, ||f(D1) — f(D2)H1J

for all databases D, D, differing in at most one element.

98

[Dwork 2008]



e-Differential Privacy Theorem

" For f:D — RF,  the mechanism K, that adds independently A
generated noise with distribution Lap(AT) to each of the k output
terms preserves the e-differential privacy.

.

.

99 [Dwork 2008]



Part IV

* Network Science
* Privacy Preservation

* Natural Language Processing
 Random noise injection



Noise-Enhanced Natural Language Processing

* Injection of noise into a neural network : data augmentation

e Data augmentation techniques for speech data or computer vision

* Text data has not many popular techniques for data augmentation.
* Natural language data are difficult to process.

* Itis too hard to generate realistic textual data. E grayscale E & till a cat
: ﬂrp

shuffle _
meaning

changed

>

this is good is this good

101 [Goodfellow 2016, Coulombe et al.,2018, Chaudhary 2020 ]



Noise-Enhanced Natural Language Processing

e Data augmentation techniques used in artificial vision to NLP
* Involving data transformations at the data pre-processing stage

* Textual noise injection : text augmentation techniques
* Making some changes in the texts : adding, deleting, modifying the letters in

words, and changing the punctuation.

Image credit: Brett Jordan

102 [Coulombe et al.,2018 ]



Random Noise Injection in NLP

 Spelling Errors Injection
* Generates texts containing common misspellings
e To train more robust models

Thes is very cool
] This is very cool <
* Random Insertion This id very cool
* Find synonym of a random word and insert that into a random position in the
sentence.

synonym

awesome ——> perfect

insert at
random wg,-{[/ \,-andom position

It is awesome It is perfect awesome
original augmented

103 [Xie et al., 2020, Coulombe et al.,2018, Chaudhary 2020 ]



Random Noise Injection in NLP

* Unigram Noising
* Perform replacement with words sampled from the unigram frequency

dIStrIbUtIOH Unigram Frequency Distribution
count
* Blank Noising | | ' wib&
replace
* Replace a random word with a placehc words to | |
a ([ | LS — text
nf

This is very cool —> This _ very cool

104 [Xie et al., 2020, Xie et al, 2017, Chaudhary 2020 ]



Random Noise Injection in NLP

* Sentence Shuffling
» Shuffle sentences present in a training text to create an augmented version

The movie was cool. | liked the characters.

* Random Swap The length could have be shortened.
 Randomly swap any two words in the sen l shuffle
_ swap words |
It is awesome » |t awesome is -

* Python library of noise enhancem
* It adds new rows to datasets

original augmented

NoiseMix

noisemix 0.1.1

105 [Xie et al., 2020, Chaudhary 2020 ]



Conclusions

e Signal Processing

e Part | * Image Processing
e Biology and Physics
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