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Abstract—With the demand to model the relationships among
three or more entities, higher-order networks are now more
widespread across various domains. Relationships such as multi-
author collaborations, co-appearance of keywords, and co-
purchases can be naturally modeled as higher-order networks.
However, due to (1) computational complexity and (2) insufficient
higher-order data, exploring higher-order networks is often lim-
ited to order-3 motifs (or triangles). To address these problems,
we explore and quantify similarites among various network
orders. Our goal is to build relationships between different
network orders and to solve higher-order problems using lower-
order information. Similarities between different orders are not
comparable directly. Hence, we introduce a set of general cross-
order similarities, and a measure: subedge rate. Our experiments
on multiple real-world datasets demonstrate that most higher-
order networks have considerable consistency as we move from
higher-orders to lower-orders. Utilizing this discovery, we develop
a new cross-order framework for higher-order link prediction
method. These methods can predict higher-order links from
lower-order edges, which cannot be attained by current higher-
order methods that rely on data from a single order.

Index Terms—higher-order networks, hypergraph, measure-
ment, link prediction

I. INTRODUCTION

With the rapid development of social platforms and online

technologies, graph data has become richer not only in scale,

but also in variety and complexity. As a result, researchers have

proposed several representations for more complex networks.

Examples include Multi-Layer Graphs [1], which separate

distinct types of relationship to multiple layers; Heterogeneous
Information Networks (HIN) [2] that distinguish different types

of nodes and edges; and Hypergraphs [3], that extend edges

to relations between sets of nodes of unlimited size.

While most graphs only model relationships between two

entities (are dyadic), we often observe co-occurrences of

more than two entities. Examples include co-authorships on

publications, co-appearances at group events, or multiple tags

in a single news article. In most cases, these relationships

are not exactly equal to a set of two-entity relationships. For

example, author A, B, and C publishing one paper is not

equivalent to AB, BC, AC publishing three. To address this

issue, Higher-Order Networks (HON) [4] model various orders

of relationships, e.g. triangles are order-3 relationships.

Higher-Order studies have the potential to explore richer

information in networks. However, there exist several difficul-

ties in studies of higher-order network. The main concern is

the computational costs. One can naturally model higher-order

networks as tensors, extending the adjacency matrix. However,

computing on these often large, but sparse, tensors is expensive

and seldom provides intuitive information due to uncertainties

in tensor algorithms [5]. Another issue is insufficient data

on higher-order relations. For example, while users can add

unlimited hashtags to a tweet, people often prefer to add fewer

than three most relevant hashtags. The consequence is that

the space of higher-orders becomes extremely sparse, often

negatively impacting the performance of learning models.

Due to these issues, most studies on higher-order networks

focus on some fixed small orders. In studies of network

motifs (frequent subgraphs) [6], the motifs counted are often

small and specific, such as triangles [7], chains/loops [8]

or cliques [9]. Also, for direct higher-order models such as

simplicial complexes [10] and hypergraphs [11], studies are

usually limited to some fixed upper-bound on the larges orders

studied [12]. It is still challenging to include all (across all
orders) higher-order information.

The present work: Cross-Order Similarities. Our work here

aims to capture higher-order information in graphs across

various orders. Instead of modeling the graph as a whole,

we explore relationships between different orders. Instead

of mining sparse higher-order information, we find evidence

for the existence of higher-order edges from richer lower-

order information. To do so, we study whether there exists

consistency among various cross-order relationships; that is,

how the appearances of lower-order edges relate to higher-

order ones. Specifically, we study cases in which lower-order

edges such as (A,B) appear as subsets of higher-order ones

(A,B,C). In this way, any higher-order edge set can be

downgraded to lower-order edge sets, which also enables

comparison between any order edges. First, the higher-order

edge set h can be compared with the lower-order edge set

l by enumerating subedges of order-l in h; Second, two

different higher-order edge sets h1 and h2 (h1 �= h2) can

be compared by downgrading both to a unified lower-order

space l. Such comparisons reveal cross-order connections
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Fig. 1. Comparison among Higher-Order Network Models. (a). A simple graph and its motif graph for the motif: 3-clique (triangles). Motif graphs have
the same set of nodes as the original graph, but their edges represent memberships in given motifs. For this example, the given motif is a triangle. As two
triangles are in this graph and edge (v1, v3) is shared by both triangles, its edge weight is 2. Similarly, edge (v4, v5) does not exist (its weight is 0) as it is
not in any triangle. (b). A simplicial complex, including a 0-simplex (single node), a 2-simplex (triangle) and a 3-simplex (tetrahedron). Note that any face
(sub-simplex) of existing simplex are also included in the simplicial complex, for example (v5, v6, v7). (c). A hypergraph similar to (b). Unlike simplicial
complexes, any subedge of hyperedges can appear in the edge set independently, such as (v1, v2, v3) and (v2, v3) that are two different edges.

especially for higher-order edges, which allows on to study

their emergence and structures. By studying these connections,

we present a new family of link prediction methods for higher-

order edges.

The main contribution of this paper can be summarized as

follows:

1) We propose techniques to measure cross-order con-

sistency in higher-order networks. Such measurements

can be used naturally as network features in machine

learning methods for higher-order networks;

2) Through extensive experiments, we show various pat-

terns of cross-order relationships from 19 real-world

datasets; and

3) Based on the insights derived from cross-order consis-

tencies, we develop a series of new higher-order link

prediction methods.

The rest of this paper is organized as follows. We detail the

related work in Section II. We introduce the preliminaries and

models of higher-order networks in Section III. We propose

our similarity measure in Section IV and show some findings

on real-world datasets. Using case studies, we present a new

higher-order link prediction method in Section V. We conclude

with a discussion and potential future work in Section VI.

II. RELATED WORK

We survey related research from two perspectives. First, we

review various higher-order network models that study higher-

order interactions in networks. Second, we review algorithms

that can be applied to higher-order networks.

A. Higher-Order Network Modeling

We survey higher-order network models and their applica-

tions; see figure 1 for details. In earlier studies, Milo et al. [6]

noticed that specific subgraphs (denoted as network motifs)

have unusual frequencies of appearance. Such motifs are found

to be closely related to network functionalities [13], [14] and

can be used as features to identify the types of networks [15].

Using network motifs, Benson et al. [4] have developed a

series of techniques for higher-order network analysis. Yin

et al. [16] propose a clustering coefficient based on higher-

order cuts, clustering the graph by minimizing the cost of

breaking the motifs. Network motifs are also used for higher-

order measurements such as modularity [1] and representation

learning [17].

Besides exploring higher-order structures such as motifs in

dyadic networks, some studies analyze higher-order networks

using models specifically designed for such networks. A

simplicial complex [10] can be interpreted as one kind of

such higher-order generalizations of the graph: a collection of

nodes, edges, triangles, and higher-order entities. Each entity

of size k represents an interaction that involves k nodes simul-

taneously. One of the common usages of a simplicial complex

is to extract networks from geometric information. Such a

process is called filtration, and is widely used in sensor cov-

erage [18], disease detection [19], and mobility analysis [20],

among others. There are also various network analysis tools

for simplicial complexes, including configuration models [21],

random walk techniques [22] and sparsification methods [12].

Another higher-order generalization of a graph is a hyper-
graph [11]. Its main difference from the simplicial complex

is that the hypergraphs are not inclusive by default. As shown

in Figure 1 (c), the hypergraph can have edges (v1, v2, v3)
and (v2, v3) independently. Many graph-based concepts are ex-

tended to hypergraphs, including random walks [23], centrali-

ties [24] and tensors (adjacency matrix) [25]. For applications,

hypergraphs are used in classification [26], clustering [27] and

generative models [28].

B. Higher-Order Link Prediction

For predicting links in higher-order networks, most edge

scoring methods for dyadic graphs can be easily extended

to higher-order networks. Examples include neighborhood

similarity methods such as Adamic-Adar [29], as well as path-

based methods like Katz [30] and PageRank [31].

In addition, some methods are developed specifically for

higher-order models. Network motif counts can be used either
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directly as local features [32] for unsupervised scoring or can

be used as link prediction features in a supervised setting [33].

For simplicial complexes, new higher-order links can be pre-

dicted using local counts of their existing sub-edges that form

a smaller simplex [34]. As for hypergraphs, recent studies have

applied neural networks to achieve this goal [35].

In general, link prediction methods that utilize the whole-

graph structure (are global) may be able to reach higher

accuracy but require extensive computational power. Such a

trade-off is intensified in higher-order networks, making them

less scalable especially for higher-order edges.

III. PRELIMINARIES OF HON MODELINGS

A. Hypergraph

Here, we use G = (V, E) to denote a hypergraph, where

the vertex set V remains the same. The edge set E = {e|e ⊆
V } is the set of subsets of V . We only consider undirected

hypergraphs. The main difference from dyadic graphs is that

the edges become sets/unordered tuples instead of pairs.

A k-uniform hypergraph is a hypergraph where each edge

contains k vertices.

Random hypergraph Gk(n,M) is defined as a hypergraph

chosen uniformly at random from the family of all possible((nk)
M

)
k-uniform hypergraphs with vertex set n = |V | and M

number of edges [36].

B. Modeling in this Paper

We model higher-order networks naturally using a hyper-

graph. For example, at time t, co-occurrence of node v1, v2 and

v3 yields an order-three edge: (v1, v2, v3). However, slightly

different from traditional hypergraphs, we store edges of
different orders separately instead of an unordered collection

of hyperedges. This allows us to explore the influence across

orders and measure similarities across different orders. Hence,

we represent a higher-order graph as

G = (V,E1, E2, . . . ), (1)

where V is the set of vertices, and

Ei ⊆ {(x1, . . . , xi) | (x1, . . . , xi) ∈ V i and x1 �= . . . �= xi}
is the set of order-i edges. Each layer (V,Ek) is a k-uniform

hypergraph, which is a subgraph of G. Note that all orders of

edges are among Cartesian powers of the same set of vertices.

Here, we do not consider the direction of edges, i.e., any edge

in Ei is an unordered tuple of vertices.

We define a subedge relationship when a lower-order edge

is a subset of a higher-order edge, that is el � eh, where

el ∈ El, eh ∈ Eh and l < h. Here we call el an l-subedge of

eh.

Depending on the dataset and/or the purpose of the study,

there could be a weight function w : Ei → R for all higher-

order edges. We mainly focus on analyzing the structure of

higher-order networks so for the majority of our analysis, the

graph is unweighted.

IV. CROSS-ORDER SIMILARITIES

We first present an approach to measure similarities between

any orders, along with subedge distributions. In particular,

we explore whether the existence of higher-order edges is

consistent with lower-order ones. For example, how likely

are the order-2 subedges of E3 to appear in E2? We further

generalize the similarities to spaces lower than both edge

sets, and quantitatively analyze their relationships. Finally, we

collect these scores from real-world datasets and report our

findings.

A. Similarity of Eh and El

For higher-order edges, we enumerate their possible lower-

order subedges. This approach allows comparing them to

the original lower-order edges. For a given hypergraph G =
(V,E1, E2, . . . ), we want to measure the similarity of two

layers Eh and El, where h > l. First, we downgrade the

order of Eh to order l by enumerating all its l-subedges of

every single edge.

Eh→l = {e|e ⊆ eh where eh ∈ Eh, |e| = l}, (2)

where Eh−l is the downgraded edge set of Eh at order-l.
Then we can define the similarity of Eh and El by Jaccard

Similarity [39] of Eh→l and El.

sim(Eh, El) = Jaccard(Eh→l, El) =
|Eh→l ∩ El|
|Eh→l ∪ El| . (3)

The similarity of edge sets is a symmetric measure. However,

in real-world graphs the density of edges can be extremely

imbalanced on higher- and lower-orders. As a result, we also

define two one-way similarities.

hsim(Eh, El) =
|Eh→l ∩ El|

|Eh→l| ; (4)

lsim(Eh, El) =
|Eh→l ∩ El|

|El| . (5)

Here, hsim measures the overlap rate over higher-order

subedges, while lsim measures the overlap rate over lower-

order edges. Once we explore the network step by step across

different orders, these one-way similarities provide more utility

than the symmetric measure.

B. Subedge Distribution

In addition to the overall similarities, we also investigated

the subedge distribution from higher→lower edges. Each

hyperedge of order-h has
(
h
l

)
order-l subedges. We count the

number of occurrences of those subedges in El. For each

eh ∈ Eh,

subedge rate(eh, El) =

∣∣∣∣{el|el ⊆ eh and el ∈ El}
∣∣∣∣(

h
l

) , (6)

abbreviated as se rate. Examining the subedge rate of all

hyperedges in Eh, we obtain a discrete distribution of subedge

existences from Eh to El, which is

P (X = a) =
|{eh|eh ∈ Eh, se rate(eh, El) = a}|

|Eh| . (7)
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Graphs Vertices Timestamps Unique Edges Max Order Average Order
coauth-DBLP [34] 1,924,991 3,700,067 2,599,087 25 2.78
coauth-MAG-Geology [34] 1,256,385 1,590,335 1,207,390 25 2.78
coauth-MAG-History [34] 1,014,734 1,812,511 895,668 25 1.31
congress-bills [34] 1,718 260,851 85,082 25 3.66
contact-high-school [34] 327 172,035 7,937 5 2.05
contact-primary-school [34] 242 106,879 12,799 5 2.10
DAWN [34] 2,558 2,272,433 143,523 16 1.58
email-Enron [34] 143 10,883 1,542 18 2.47
email-Eu [34] 998 234,760 25,791 25 2.33
NDC-classes [34] 1,161 49,724 1,222 24 3.14
NDC-substances [34] 5,311 112,405 10,025 25 1.85
tags-ask-ubuntu [34] 3,029 271,233 151,441 5 2.71
tags-math-sx [34] 1,629 822,059 174,933 5 2.19
tags-stack-overflow [34] 49,998 14,458,875 5,675,497 5 2.97
threads-ask-ubuntu [34] 125,602 192,947 167,001 14 1.80
threads-math-sx [34] 176,445 719,792 595,778 21 2.24
threads-stack-overflow [34] 2,675,955 11,305,343 9,705,709 25 2.26
twitter-hashtag-covid19 [37] 12,033 59,892 10,074 33 2.21
twitter-hashtag-ira [38] 190,481 2,585,982 242,988 30 1.44

TABLE I
DATA STATISTICS

Here, we simply denote this distribution as distr(Eh, El).

Although the subedge distribution is a measurement at

different levels with lsim, they are indeed similar to each

other. The main difference is that lsim first downgrades all

the subedges to a set without duplicate; While subedge rate

records the overlap rate at the level of individual higher-order

edges. For a random hypergraph, the expectation of the mean

of the subedge distribution is equal to the expectation of lsim.

This is obvious as in a random graph, order-l subedges are

selected with equal probabilities, and hyperedges of order-

h are generated independently with order-l. No matter what

the sampling process is, the expectation is always equal to

|El|/
(|V |

l

)
.

In real-world graphs, their difference can somehow reflect

the graph structure as the intersecting subedges of Eh are

counted multiple times by subedge rates. Let us consider an

extreme example: all hyperedges in E3 are intersecting at the

same order-2 subedge e. If all subedges in E3→2 except e
belong to E2, the mean of the subedge distribution is equal to

2/3, while hsim(E3, E2) goes to 1. On the contrary, if only e
belongs to E2, then the mean of subedge distribution equals

1/3 while the hsim(E3, E2) goes to 0.

C. k-Similarity of Eh and El

In Equation 3, we compare the similarity at order-l. We

can further compare the similarities of two layers at order less

than l. The cross-order similarity can be further generalized

to order-k, where 1 ≤ k ≤ l, noted as k − sim(Eh, El) (for

simplicity, from this point denoted as k − sim).

k−sim(Eh, El) = Jaccard(Eh→k, El→k) =
|Eh→k ∩ El→k|
|Eh→k ∪ El→k| .

(8)

Here, we downgrade the edge sets of both orders to be

compared in a lower-order space. When k = l, the k − sim
is exactly the sim defined in Equation 3.

For given Eh and El, their k − sim for different k are

correlated with each other, as subedges of order k− 1 can be

interpreted as further subedges of order k. Assume we know

the k−sim = p, and the total number of subedges in |Eh→k∪
El→k| = X . Then, the lower and upper bounds of (k−1)−sim
are [

p

1 + (1− p) k
√
k!pX

,
p+ p k

√
k!(1− p)X

1 + p k
√

k!(1− p)X

]
(9)

Proof. First, pX is the number of overlapped subedges of

Eh→k and Eh→l, and (1− p)X is the rest. The lower bound

occurs when the overlapped subedges form cliques while the

non-overlapped subedges are not connected. In this way, at

(k − 1) order the overlapped subedges is at minimum while

the non-overlapped is at maximum. Here, we assume n is the

number of nodes in Eh→k ∩El→k in the form of a complete

graph; then
(
n
k

)
= pX . The number of overlapped (k − 1)

subedges is A =
(
n−1
k

)
= pXk/(n−k+1). On the other hand,

each subedge from non-overlapped side derive
(

k
k−1

)
= k

subedges that are still not overlapped, the total number is

B = (1 − p)Xk. So the lower bound of (k − 1) − sim is

A/(A+B). From the inequalities nk

k! ≥ (
n
k

) ≥ (n−k)k

k! we can

derive the upper and lower bound of n represented by k, p and
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Dataset Eh El 2-sim 2-hsim 2-lsim 3-sim 3-hsim 3-lsim 4-sim 4-hsim 4-lsim
E3 E2 0.2489 0.2935 0.6212 - - - - - -
E4 E2 0.2243 0.2582 0.6310 - - - - - -

tags-ask-ubuntu E5 E2 0.2117 0.2452 0.6074 - - - - - -
E4 E3 0.3187 0.4510 0.5208 0.1024 0.1349 0.2985 - - -
E5 E3 0.3032 0.4315 0.5049 0.0843 0.1024 0.3232 - - -
E5 E4 0.3206 0.4824 0.4889 0.1289 0.1942 0.2771 0.0409 0.0530 0.1522
E3 E2 0.0992 0.1275 0.3095 - - - - - -
E4 E2 0.0547 0.0696 0.2042 - - - - - -

coauth-DBLP E5 E2 0.0342 0.0465 0.1144 - - - - - -
E4 E3 0.1248 0.2027 0.2450 0.0525 0.0710 0.1680 - - -
E5 E3 0.0748 0.1382 0.1401 0.0225 0.0297 0.0854 - - -
E5 E4 0.1148 0.2258 0.1893 0.0610 0.1048 0.1272 0.0283 0.0391 0.0936

TABLE II
k-SIMILARITIES

X , which is k
√
k!pX + k ≥ n ≥ k

√
k!pX . Taking the upper

bound of n, we get the final lower bound of (k − 1)− sim.

Similarly, the upper bound is calculated by taking over-

lapped subedges at maximum and the non-overlapped

subedges at minimum.

Note that the expectation of (k−1)−sim is equal to k−sim
in random graphs. But in real-world graphs, highly connected

structures are usually overlapped, so we expect (k− 1)− sim
to be greater than k − sim in most cases.

D. Observations on Real-World Datasets

By calculating the similarities and subedge distributions of

19 real world datasets, we find two representative patterns,

where each of the 19 datasets exhibits one of these patterns.

Here we select one dataset from each category as examples

to compare their similarities and subedge distributions – tags-

ask-ubuntu and coauth-DBLP. We summarize all datasets we

used in this and the following sections in Table I.

First, we calculate all cross-order k-similarities of both

datasets. As shown in Table II, for each dataset we divide the

cross-order similarities into three sets, depending on El. For

the same El, l− sims (bold) are the original cross-order sim-

ilarities defined in equation 3, while smaller-order similarities

are also collected. For tags-ask-ubuntu the similarities from

different orders to same El are extremely close, for example

sim(E4, E3) and sim(E5, E3). Such consistency indicates

that for this kind of datasets, subedges from various higher-

orders share similar aspects over lower-order spaces. But for

coauth-DBLP, the similarities obviously decrease when the

order gap increases. For these kind of datasets, similarities are

higher for orders closer to each other. Another finding is for

same Eh and El, their k−sim increases significantly when k is

decreased. This finding also matches our discussion after the

similarity bounds 9, in which highly connected components

are more likely to be overlapped across orders rather than

scattered parts.

We can also show these two patterns from the perspective

of subedge distribution. As shown in figure 2 (a)(b)(c)/(d)(e),

subedge distributions of tags-ask-ubuntu have similar shapes

and means, where their means are similar as lsim in table II

(we have already analyzed this after equation 6). On the

contrary, for coauth-DBLP (f)(g)(h)/(i)(j) they have similar

shapes but decreasing means for larger order gaps. This dis-

covery provides a chance to imitate the cross-order relations of

existing orders to predict the unknown higher-order structures.

Note that there is a subedge rate that measures the correla-

tion between higher-order subedges to lower-order edges. One

may wonder if there is a symmetric relationship between how

lower-order edges aggregate to become higher-order edges. For

example, at what rate do triangles in order-2 become an edge

in order-3? Unfortunately, we find that this rate is extremely

low among all datasets. That is, lower-order structures provide
insufficient evidence for formation of higher-order edges.

V. CROSS-ORDER LINK PREDICTION

Knowing that there exist one-way consistencies across

various orders, we introduce a series of cross-order link

prediction approaches that harness this finding. Our goal is

to predict higher-order edges from richer lower-order edges.

For example, we try to predict higher-order edges, such as

order-3,-4, and -5 from denser lower-order edges. Note that

here we assume we do not know any existing hyperedge from

the target order.

To that end, we first introduce our specific experimental

setup and some baselines. Then we propose our cross-order

link prediction methods based on this consistency. Finally, we

summarize the results.

A. Experimental Setups and Baselines

Formally speaking, our goal is to predict order-3, order-4,

and order-5 edges, using one or two lower-order edge sets.

Note that training and testing instances are not in the same

space, and it is impossible to enumerate all possible links

in higher-order space. Hence, we generate random negative

candidates by 30%/40%/50%/60%/70% from random walk
sampling and the rest from random node sampling. That is, to

increase the difficulty as random walk sampling is more likely

to generate negative edges with higher rate of connectivity. We
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Fig. 2. Consistency of subedge rate distributions illustrated using two typical cases. (a)-(e) stable discrete distribution of tags-ask-ubuntu. (f)-(j) decreasing
stable discrete distribution of coauth-DBLP. X-axis indicates ratio of subsets from higher-order edges existing in lower-order space. Y -axis counts the number
of higher-order edges with such ratio. These distributions exhibit high consistency under the setting of same lower-order spaces, e.g. (a)(b)(c) are from
higher-order to order-2. We calculate means of each distribution at the corner.

shuffle the percentage of random walk sampling to see how it

reflects on the performance.
For baselines, we generalize several regular link prediction

methods. Most similarity-based methods for dyadic graphs

can be extended to higher-order networks by summing up

scores of its subedge similarities in the downgraded order-2

graph. In this paper we apply several state-of-the-art methods

for comparisons – Adamic-Adar [29], Jaccard similarity [39],

Preferential Attachment [40] and Resource Allocation [41].
Besides the generalized baselines from common graphs, we

add two more baselines that count similarities using cross-

order information. The idea of these baselines are exactly same

as the work of Benson et al. [34], which scores the candidates

directly by the number of subedges in the lower-order edge

set. The only difference is that in this work we consider

the graph as unweighted, while in the original paper they

applied Harmonic/Geometric/Arithmetric means of weighted

edges. These methods are considered optimistic methods,

since more supports from lower-order spaces directly lead to

higher prediction scores. The experimental results from [34]

have already shown that the performances of such cross-order

methods are competitive (outperform for some datasets) with

those of the classic scoring methods.

Baseline 1: Single-order Prediction. We formally introduce

our scoring algorithm from basic settings – predict higher-

order edges Eh from single lower-order layer El. For a

candidate higher-order edge |e| = h, we directly score it by is

subedge rate from equation 6

scoreS(e) = se rate(e, El) (10)

Baseline 2: Multi-order Prediction. Once using multiple

orders of edges as training instances, we create a linear

combination of multiple order scores to enhance precision,

controlled by a weighting parameter α.

scoreM (e) =
n∑

i=1

αi × se rate(e, Eli) (11)

All of these baselines rely on a common assumption:

new edges are likely to appear to form more well-connected

components. This is generally true for most real-world graphs.

However, in higher-order networks there might be an opposite

power that comes from the sparsity of higher-order edges.

Taking this effect into account, there is the possibility of

further improving the accuracy of classic methods.

B. Proposed Method Based on Subedge Distribution

Here we define a general framework of link prediction

that fully utilizes the consistencies of subedge distributions

from different orders. In Section IV-D we have already shown

that there exist consistencies, either stable or decreasing, of

subedge distributions from different higher-orders to same

lower-orders. The first step of this link prediction method is to

predict the subedge distribution of the unknown order to the

existing orders.

scoreSD(e) =

n∑
i=1

αi × f(se rate(e, Eli)) (12)

For subedge rates of candidate edges to different training

orders, we apply a function f that depends on all accessible

subedge distributions from training instances. This function

maps the actual subedge rate to a score based on the generated

distribution that is similar to the existing one. Assume our

training edge sets are El1 , El2 , . . . , ElM and the testing edges

are from order h, where l1 < l2 < · · · < lM < h. In order to

keep generality, we do not assume l1, l2, . . . to be continues

orders, for example it can be order- 1,3,4.

Here we consider the following three conditions of

f(se rate(e, Eli)):

1) li = lM : When the training edge set ElM is the largest

order of all training sets, there do not exist any other higher-

order training instance to learn the subedge distribution to
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Training Testing Adamic-Adar Jaccard Preferential Resource Single-order Multi-order Subedge Distribution
Attachment Allocation Prediction Prediction Prediction

E2 E3 0.7444 0.4290 0.7413 0.7168 0.5283 - -
E2 E4 0.6228 0.4304 0.6457 0.6161 0.4645 - -
E3 E4 0.7991 0.7326 0.7460 0.7987 0.7946 - -
E2,E3 E4 0.7466 0.4054 0.7137 0.7475 - 0.6137 0.9099
E2 E5 0.5485 0.4211 0.5747 0.5626 0.4443 - -
E3 E5 0.7597 0.7146 0.6834 0.7611 0.8031 - -
E4 E5 0.8007 0.8144 0.7168 0.8040 0.7681 - -
E2,E3 E5 0.6806 0.3893 0.6498 0.6839 - 0.6402 0.8542
E2,E4 E5 0.7225 0.4031 0.6657 0.7256 - 0.5175 0.8550
E3,E4 E5 0.7765 0.7101 0.6953 0.7774 - 0.8004 0.8034
E2,E3,E4 E5 0.8026 0.4315 0.7617 0.8056 - 0.7153 0.8621

TABLE III
AUC-PR OF LINK PREDICTION (50% RANDOM WALK, TWITTER-HASHTAG-COVID19)

ElM . Without any per-knowledge one can only directly use

the subedge rate without any change, such that

f(se rate(e, ElM )) = se rate(e, ElM ).

2) li = lM−1: When the target edge set is the sec-

ond largest order ElM−1
, we already have one subedge

distribution to ElM−1
in training set, that is from ElM .

Here we assume that the unknown subedge distribution of

(Eh, ElM−1
) will be similar to distr(ElM , ElM−1

). Since there

is only one reference, we simply assume that they have

the same mean. Now the goal is to convert the existing

distribution to a synthetic distribution with same possible

values of the random variable. For distr(ElM , ElM−1
) the

random variable X = 0, 1/N1, 2/N1, . . . , 1 where N1 =(
lM

lM−1

)
, and for distr(Eh, ElM−1

) the random variable Y =

0, 1/N2, 2/N2, . . . , 1 where N2 =
(

h
lM−1

)
.

Now we want to build a random variable with the same

mean of X but has same possible values with Y, say X∗. Let

Z ∼ U(0, 1) be a uniform distribution, then let L = N1X+Z
becomes a continuous random variable of (0, N1 + 1). Here

we apply a linear transformation to L to scale it to (0, N2+1),
such that

L∗ =
N2 + 1

N1 + 1
· L. (13)

By applying the integral binning operator:

bin(·) = · −mod(·, 1),
we obtain a discrete distribution bin(L∗), which equals to

N2X
∗. Finally, X∗ = bin(L∗)/N2 is the estimated subedge

distribution of distr(Eh, ElM−1
), noted as ˆdistr. Then

f(se rate(e, ElM−1
)) = P (X∗ = se rate(e, ElM−1

)),

where X∗ ∼ ˆdistr(Eh, ElM−1
).

3) li = lM−2, lM−3, . . . , l1: When the target edge set is

neither the first nor the second highest order, there are more

than one subedge distributions from the training sets. It is

necessary to learn the trend of means of the subedge dis-

tributions, either stable or decreasing. Formally, the problem

is to predict the distribution distr(Eh, Eli) from distribu-

tions we already have distr(ElM , Eli), distr(ElM−1
, Eli),...,

distr(Eli+1
, Eli). Since there is no need to change the

shape of distributions, we just calculate a expected mean of

distr(Eh, Eli) from the means of the given distributions. This

process is carried out by a simple linear regression where

xi = li+1, . . . , lM and yi = μi+1, . . . , μM .

After obtaining μ̂h, we transform the distr(ElM , Eli) to
ˆdistr(Eh, Eli) following the same steps above. Note here we

use lM rather than else because lM is the closest order with

h. The only difference is in Equation 13, we also apply the

expected mean to the transformation, such that

L∗ =
N2 + 1

N1 + 1
· μ̂h

μM
· L. (14)

Finally, the function

f(se rate(e, Eli)) = P (X∗ = se rate(e, Eli)),

where X∗ ∼ ˆdistr(Eh, Eli).

Note that both domain and range of function f are [0, 1], so

it can be used as single order similarity without any other scal-

ing. In summary, the proposed method predicts the subedge

distribution from the testing order to each training order. And it

applies probabilities from the predicted distributions as scores.

Such a mapping prevents the model to be too optimistic of

predicting most well-connected hyperedges.

C. Overall Performances

For each dataset, we create negative samples by varying

random walk ratios. For each training and testing set, we pre-

form all combinations of cross-order link prediction from the

lower-order(s) to higher-order. In total, we tested 7 methods on

5 samples × 11 tasks × 19 datasets. All weights are selected

by a simple grid search. We observe that similarity scores are

not so sensitive to weights; basically, they just represent the

ranking of significance of each component.

As an example, Table III shows a single set of link pre-

diction results. Single-order Prediction prediction can only

be applied to single-order training sets, while Multi-order
Prediction and Subedge Distribution Prediction can only be

applied to training sets with multiple orders. Here, we further

split the tasks into three meta-groups based on the testing set,
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Fig. 3. Summarizes all AuC-PR results of all datasets and settings. X- and Y-
axis are datasets and various training/testing sets. The Z-axis represents the
AuC-PR of the prediction result. Some methods are just fit for single/multiple
training orders, so for different surfaces there may not exist points with
corresponding X- and Y- coordinates. However, this do not influence the
observation of the overall performances.

which shows the influence of selecting different training sets.

Among all baselines, Adamic-Adar and Resource Allocation
show relatively stable performances, while Single-/Multi- or-
der Prediction can outperform other baselines for just some

cases. The proposed method is stable and always outperforms

the others.

Figure 3 summarizes all AuC-PR results as a surface.

The proposed Subedge Distribution Prediction (SDP) method

clearly outperforms other methods in almost all cases.

D. Predict Random Walk Samples

We explore the influence of sampling more negative in-

stances from random walk sampling. A random walk process

on existing edges can generate hyperedges with more common

neighbors or subedge relationships with existing edges. For

example, with the training set E2, E3, E4, we perform a

hypergraph random walk and generate a hyperedge with every

5 unvisited nodes. Such an edge will likely get a higher score

from those optimistic prediction methods. However, for the

proposed method more subedges in training instances may not

lead to a higher score, since these are already an assumption

on subedge distributions.

As shown in Figure 4, when the percentage of nega-

tive instances sampled by random walk is increased, all

link prediction methods are less accurate except Subedge
Distribution Prediction (SDP). This confirms our discovery

that similarity-based methods tend to be too optimistic with

positive cross-order correlations. Only Subedge Distribution
Prediction (SDP) adapts to different cross-order distributions

as it learns and simulates the cross-order distribution from the

training set.

0.3 0.4 0.5 0.6 0.7

0.4

0.6

0.8

Random Walk Ratio

A
u
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Jaccard
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SDP

Fig. 4. Prediction performances of all methods while varying the ratio of
negative instances sampled by random walk (an example of twitter-hashtag-
covid19, training by E2 and E3, predicting E4). Apparently, all methods
except the proposed method, are vulnerable to the random walk sampled
negative edges. Note that AA and RA are overlapped.

VI. DISCUSSION AND FUTURE WORK

Higher-order networks are proposed and modeled in various

domains. Due to computational costs, most studies stop at

order-3 (triangles). Our proposed solution to address this issue

involves building relationships between different orders and

solving higher-order problems in lower-order spaces. Thus,

whether there exists any consistency becomes crucial for

further research and applications.

We propose cross-order consistency measures for higher-

order networks. Our experiments on real-world data show that

higher-order links exhibit only one-way consistency across

different orders. Harnessing this similarity, we propose new

cross-order link prediction method based on lower-order edges,

which are richer and easier to be processed.

There exist several limitations to our work: (1) the proposed

approach cannot still effectively predict occurrences of higher-

order edges from any single lower-order space. The sufficient

condition for forming a higher-order edge from lower-order

edges is still unclear; (2) while dividing hypergraphs into

fixed orders simplifies the computation, it may also lose some

information on the local cross-order structures. Our future

work aims to address these limitations and build more com-

prehensive and computationally friendly higher-order network

models.
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