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ABSTRACT

Spatial-temporal graph have been widely observed in various
domains such as neuroscience, climate research, and trans-
portation engineering. The state-of-the-art models of spatial-
temporal graphs rely on Graph Neural Networks (GNNs) to
obtain explicit representations for such networks and to dis-
cover hidden spatial dependencies in them. These models
have demonstrated superior performance in various tasks. In
this paper, we propose a sparse adversarial attack framework
ADVERSPARSE to illustrate that when only a few key con-
nections are removed in such graphs, hidden spatial depen-
dencies learned by such spatial-temporal models are signifi-
cantly impacted, leading to various issues such as increasing
prediction errors. We formulate the adversarial attack as an
optimization problem and solve it by the Alternating Direc-
tion Method of Multipliers (ADMM). Experiments show that
ADVERSPARSE can find and remove key connections in these
graphs, leading to malfunctioning models, even in models ca-
pable of learning hidden spatial dependencies.

Index Terms— Graph sparsification, adversarial attack

1. INTRODUCTION

Spatial-temporal graphs are universal in many domains, espe-
cially in transportation. For example, traffic forecasting using
spatial-temporal graphs is an extremely challenging task due
to complex spatial dependencies and varying temporal trends.
Recent studies have captured the spatial dependencies by us-
ing Graph Neural Networks (GNNs), while Recurrent Neural
Networks (RNNs) are used to model the temporal trends [1, 2,
3, 4]. To improve the performance of tasks such as traffic fore-
casting, developing GNN models for spatial-temporal graphs
has been in the spotlight. For example, Graph WaveNet [5] il-
lustrates that traditional GNNs only capture the explicit graph
structure and implicit relations may be missed due to incom-
plete information (i.e., missing connections). To obtain ex-
plicit spatial dependencies, Graph WaveNet uses graph dif-
fusion convolution Z =

∑K
k=0 PkX, where P = D−1A,

D is the diagonal degree matrix of an adjacency matrix A
of a graph with N nodes and |E| edges, and X is an in-
put graph signal. To discover implicit or hidden connections,
Graph WaveNet proposes to learn a self-adaptive adjacency

matrix Ãapt = SoftMax(ReLU(E1E
T
2 )), which can be con-

sidered as the transition matrix of a hidden diffusion pro-
cess. The learnable parameters E1,E2 ∈ RN×H can be
randomly initialized. Finally, Graph WaveNet defines Z =∑K
k=0 PkX+Ãk

aptX to capture both explicit and hidden spa-
tial dependencies.

Recent studies have shown that GNNs are vulnerable to
adversarial attacks [6, 7, 8, 9, 10]. Attackers can generate ad-
versarial perturbations by manipulating the graph structure.
Here, we develop attacks for spatial-temporal GNN models,
especially those that have the capability to resist such attacks,
e.g., by estimating hidden connections. In particular, we at-
tack state-of-the-art Graph WaveNet, where we only remove
a few connections (i.e. perform sparsification [11]) on the fil-
ter related to A in the graph diffusion convolution. This is
similar to a traffic jam happening in a road network because
a few important roads are blocked. Our attack ensures that
the learnable Ãapt cannot recover the removed connections
so that the model performance cannot be maintained.

We first analyze the relationship between sparsification
and graph diffusion convolution. We can state the transition
matrix P as P = UΛU−1 and the graph signal as X =
UC, where U = (u1, . . . , uN ) is the basis signal and C =
(c1, . . . , cN ) is the coefficients for U. Hence, we can have

Z =

K∑
k=0

PkX

=UΛ0U−1UC + UΛ1U−1UC + · · ·+ UΛKU−1UC

=
∑

1≤i≤N

λ0i ciui +
∑
i

λ1i ciui + · · ·+
∑
i

λKi ciui

=
∑

1≤i≤N

(λ0i + λ1i + · · ·+ λKi )ciui.

(1)
In Eq. 1, a filter function can be defined as h(λi) =

∑K
k=0 λ

k
i .

As the eigenvalues λi of P are all bounded above by 1, we
can use geometric series to derive a closed-form expression
for h(λi) = 1

1−λi
. It is easy to find the relationship between

the eigenvalues of P and eigenvalues (µi’s) of a normalized
Laplacian matrix L : µi = 1 − λi. Therefore, we can re-
state the filter function corresponding to eigenvalues µi, i.e.
h(µi) = 1

µi
. The number of 0 in the eigenvalues of matrix L

denotes the number of connected components and sparsifica-
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tion can increase the number of connected components.
In this paper, we propose ADVERSPARSE, a sparsifi-

cation framework to attack spatial-temporal graph models.
ADVERSPARSE achieves its objective by generating an ad-
versarial perturbation ∆ on the adjacency matrix A. We
show that only a few important connections need to be re-
moved for the attack to succeed. We specifically target Graph
WaveNet, as the state-of-the-art, to showcase the efficiency
of the proposed framework. The performance drop of Graph
WaveNets due to the attack indicates that the negative effect
of removed edges cannot be mitigated by Graph WaveNet’s
learnable self-adaptive adjacency matrix Ãapt. Our experi-
ments demonstrate that compared to other attacking strategies
including random noise, degree-based noise, and PageRank-
based noise, ADVERSPARSE not only removes fewer edges,
but the performance of Gragh WaveNet also drops the most.

2. ADVERSPARSE: ADVERSARIAL ATTACK ON
DEEP SPATIAL-TEMPORAL GRAPH MODELS

2.1. Problem Formulation

In Spatial-temporal graph modeling, the output of the graph
neural network [5] is

X̂(t+1):(t+T ) = f(X(t−S):t,A; Θ), (2)

where X(t−S):t ∈ RN×D×S denotes the historical S-step
graph signals, A ∈ RN×N denotes the adjacency matrix of
a given graph, f is the mapping relation learned by the graph
neural network to forecast the next T -step graph signals when
the historical S-step graph signals is given, and Θ is the col-
lection of parameters in the graph neural network.

Graph neural network training aims to minimize the Mean
Absolute Error (MAE) of the predicted and real graph signals
in the next T steps. The training loss is defined by

L(X(t−S):(t+T ),A; Θ) = 1
TND

T∑
i=1

N∑
j=1

D∑
k=1

|X̂(t+i)
jk −X

(t+i)
jk |

(3)
Hereafter, for simplicity of notation, we present the training
loss as L(X,A; Θ).

In the adversarial attack on deep spatial-temporal graph
modeling, we propose to increase the MAE of the prediction
produced by the graph neural network by removing limited
links in the graph. We formulate this problem as

maximize
∆

L(X,A− (A− I) ◦∆; Θ)

subject to ∆ ∈ {0, 1}N , ‖∆‖0 ≤ l,
(4)

where ◦ denotes element-wise multiplication, ∆ is the opti-
mization variable in this problem, l denotes the limited num-
ber of links that can be removed, and I is the identity ma-
trix. Both ∆ and I have the same size as A. The matrix
(A− (A− I) ◦∆) denotes the adjacency matrix of the graph
after some links are removed.

2.2. Proposed Solution

Problem (4) can be equivalently rewritten as

minimize
∆

− L(X,A− (A− I) ◦∆; Θ)

subject to ∆ ∈ ξ,
(5)

where the set ξ = {∆ | ∆ ∈ {0, 1}N , ‖∆‖0 ≤ l}. In this
problem, the l0 and binary constraints are non-convex, thus
the set ξ is non-convex. In general, it is difficult to solve the
problem with non-convex constraints, motivating us to pro-
pose an algorithm to solve problem (5).

Problem (5) can be equivalently rewritten in a constraint-
free format, which is

minimize
∆

− L(X,A− (A− I) ◦∆; Θ) + g(∆), (6)

where g(·) is the indicator function for set ξ, defined as

g(∆) =

{
0 if ∆ ∈ ξ,
+∞ otherwise.

In problem (6), the first term is the negative training loss of the
graph neural network, which is differentiable. While the sec-
ond term is the non-differentiable indicator function, which
results in the objective function for problem (6) to be non-
differentiable. It is difficult to solve problem (6) directly,
while recent research has shown that such problems can be
solved efficiently by the ADMM [12]. We first equivalently
rewrite problem (6) in ADMM form as

minimize
∆

− L(X,A− (A− I) ◦∆; Θ) + g(Ω)

subject to ∆ = Ω,
(7)

The augmented Lagrangian [12] of problem (7) is given by

`ρ
(
X,A,∆,Ω,Λ; Θ) = −L(X,A− (A− I) ◦∆; Θ)+

g(Ω) + tr[ΛT (∆−Ω)] +
ρ

2
‖∆−Ω‖2F ,

where Λ is the dual variable or Lagrange multiplier, ρ is the
penalty parameter, tr(·) denotes the trace of a matrix, and
‖ · ‖2F denotes the Frobenius norm.

The augmented Lagrangian can be equivalently rewritten
in the scaled form, which is

`ρ
(
X,A,∆,Ω,U; Θ) = −L(X,A− (A− I) ◦∆; Θ)+

g(Ω) +
ρ

2
‖∆−Ω + U‖2F −

ρ

2
‖U‖2F ,

where U = (1/ρ)Λ is the scaled dual variable. We can per-
form ADMM [12] steps as

∆k+1 := arg min
∆

`ρ
(
X,A,∆,Ωk,Uk; Θ) (8)

Ωk+1 := arg min
Ω

`ρ
(
X,A,∆k+1,Ω,Uk; Θ) (9)

Uk+1 := Uk + ∆k+1 −Ωk+1 (10)
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until

‖∆k+1 −Ωk+1‖2F ≤ ε, ‖Ωk+1 −Ωk‖2F ≤ ε. (11)

In problem (8), we solve

minimize
∆

−L(X,A−(A−I)◦∆; Θ)+
ρ

2
‖∆−Ωk+Uk‖2F .

(12)
In this problem, both the training loss and the Frobenius norm
are differentiable; thus, we can use gradient descent to solve
it. In problem (9), we solve

minimize
Ω

g(Ω) +
ρ

2
‖∆k+1 −Ω + Uk‖2F . (13)

In this problem, the first term is the indicator function of the
set ξ, and the second term is the Frobenius norm. In this case,
the problem can be solved analytically. The solution is

Ωk+1 = Πξ(∆
k+1 + Uk). (14)

The set ξ is the combination of two non-convex constraint
sets, and in general it is difficult to derive the Euclidean pro-
jection onto the combination of non-convex sets. In Proposi-
tion 1, we show that the Euclidean projection onto the set ξ
has a closed-form solution.

Proposition 1. Given ξ = {∆ | ∆ ∈ {0, 1}N , ‖∆‖0 ≤ l},
the Euclidean projection of a matrix Y onto the set ξ is

(Πξ(Y))ij =

{
0 if (Y)ij < max{0.5, r(l)};
1 otherwise,

where (·)ij is the element in the i-th row and j-th column of a
matrix, and r(l) denotes the l-th largest element in ∆.

Proof. When calculating Πξ(Y), we project Y onto a point
in the set ξ with the closest Euclidean distance. The set ξ
requires us to project every element to 0 or 1, and at most l el-
ements are 1 after the projection. We define the l-th largest el-
ement in ∆ as r(l) and project the elements which are smaller
than r(l) to 0. The reason is that smaller elements have closer
Euclidean distance to 0 rather than 1. Hence, the l0 constraint
is satisfied, and for the elements which are greater than or
equal to r(l), we consider the following two cases:

1) When r(l) < 0.5, we project the elements in the range of
r(l) and 0.5 to 0 and project the other elements to 1. This
results in the closest Euclidean projection.

2) When r(l) > 0.5, for the elements which are greater than
or equal to r(l), we project these elements to 1 as they have a
closer distance to 1 rather than 0.

In sum, when r(l) < 0.5, we project the elements that
are smaller than 0.5 to 0, and project the other elements to 1.
And when r(l) > 0.5, we project the elements that are smaller
than r(l) to 0, and project the other elements to 1. Hence, we
project an element to 0 if it is smaller than max{0.5, r(l)} and
otherwise, we project it to 1.

Table 1. Dataset statistics
Dataset # Nodes # Edges # Time Steps

METR-LA 207 1,515 34,272
PEMS-BAY 325 2,369 52,116

Finally, we update the scaled dual variable U according to
(10). This concludes one iteration of ADMM. We iteratively
update the variables until convergences (Eq. 11).

20 40 60 80

2.8

3

3.2

3.4

3.6

pruning ratio %

M
A

E

RandomSparse
DegreeSparse
PageRankSparse
AdverSparse

(a) MAE from METR-LA

20 40 60 80

7 · 10−2

8 · 10−2

9 · 10−2

0.1

0.11

pruning ratio %

M
A

PE

RandomSparse
DegreeSparse
PageRankSparse
AdverSparse

(b) MAPE from METR-LA

20 40 60 80

5.5

6

6.5

7

pruning ratio %

RM
SE

RandomSparse
DegreeSparse
PageRankSparse
AdverSparse

(c) RMSE from METR-LA

20 40 60 80

1.4

1.6

1.8

pruning ratio %

M
A

E

RandomSparse
DegreeSparse
PageRankSparse
AdverSparse

(d) MAE from PEMS-BAY

20 40 60 80

3

3.5

4

·10−2

pruning ratio %

M
AP

E

RandomSparse
DegreeSparse
PageRankSparse
AdverSparse

(e) MAPE from PEMS-BAY

20 40 60 80

2.8

3

3.2

3.4

3.6

pruning ratio %

RM
SE

RandomSparse
DegreeSparse
PageRankSparse
AdverSparse

(f) RMSE from PEMS-BAY

Fig. 1. We vary the pruning ratio from 10% to 90% with a
10% step-size to compare the performance of AdverSparse,
DegreeSparse, PageRankSparse and RandomSparse on Graph
WaveNet for 30-minute-ahead prediction.

3. EXPERIMENTS

In our experiments, we verify the effectiveness of AD-
VERSPARSE on Graph WaveNet by using two public traf-
fic network datasets: METR-LA and PEMS-BAY [1]. Data
statistics are in Table 1. METR-LA uses 207 sensors to record
four months of data on traffic speed on the highways of Los
Angeles County, while PEMS-BAY uses 325 sensors in the
Bay area to obtain six months of traffic speed information.
The readings of the sensors are aggregated into 5-minutes
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Table 2. Performance comparison of different sparsification attacks on Graph WaveNet with smaller adversarial perturbations
(i.e. pruning ratio p = 10%). Attacks by ADVERSPARSE lead to the worst traffic forecasting results on both datasets.

15min 30min 60min

Dataset Models Attack method MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

METR-LA Graph WaveNet (no attack) 2.436 0.060 4.479 2.682 0.070 5.117 3.049 0.081 6.070
RandomSparse 2.484 0.061 4.561 2.715 0.071 5.186 3.088 0.082 6.144
DegreeSparse 2.515 0.062 4.593 2.739 0.072 5.208 3.108 0.083 6.174
PageRankSparse 2.504 0.062 4.575 2.738 0.072 5.203 3.102 0.082 6.150
ADVERSPARSE 2.519 0.063 4.631 2.794 0.074 5.340 3.143 0.084 6.224

PEMS-BAY Graph WaveNet (no attack) 1.091 0.022 2.162 1.310 0.028 2.782 1.570 0.035 3.506
RandomSparse 1.102 0.022 2.181 1.324 0.028 2.807 1.582 0.036 3.524
DegreeSparse 1.111 0.022 2.196 1.348 0.029 2.847 1.604 0.036 3.570
PageRankSparse 1.112 0.022 2.198 1.342 0.029 2.835 1.592 0.036 3.537
ADVERSPARSE 1.125 0.023 2.212 1.369 0.031 2.885 1.611 0.037 3.581

windows. We use the following attacks on Graph WaveNet as
baselines to compare with ADVERSPARSE. 1

• RandomSparse (random noise), where we randomly
prune ratio p of edges in the adjancency matrix, i.e.,
removing bp × |E|c edges. The probability that each
edge is removed is 1

|E| .

• DegreeSparse (degree-based noise), where we remove
edges between high-degree nodes. This can signifi-
cantly impact natural connectivity of the graph, reduc-
ing its robustness [13]. We sort the nodes based on
their degrees and remove bp × |E|c connections be-
tween high-degree nodes, where p is the pruning ratio.

• PageRankSparse (PageRank-based noise). The PageR-
ank scores for the nodes can reflect their impor-
tance [14]. We compute the PageRank score for each
node and sort the nodes based on their scores. We
remove bp × |E|c connections after sorting the scores,
where p is the pruning ratio.

Experiments are conducted on a computer with one Intel(R)
Xeon(R) 6248R CPU @ 3.00GHz and one Quadro RTX 6000
GPU card. The settings of parameters in all methods are the
same as the default settings of Graph WaveNet. The prun-
ing ratio p is varied from 10% to 90% in 10% intervals for
all methods. When we calculate the Euclidean projection in
Proposition 1, l = bp × |E|c. We set the ρ as 0.5 in AD-
VERSPARSE. The evaluation metrics include mean absolute
error (MAE), root mean squared error (RMSE), and mean ab-
solute percentage error (MAPE).

3.1. Experimental Results

In Table 2, 10% of the connections are removed (i.e., a small
amount of noise). The results show that ADVERSPARSE leads

1We cannot consider the spectral sparsification method here as the number
of removal edge cannot be controlled. All codes are released at https:
//github.com/Code4Graph/ADVERSPARSE.

to higher prediction errors in Graph WaveNet, when com-
pared to other methods for 15-minute-, 30-minute-, and 60-
minutes-ahead predictions on both datasets.

In Figure 1, we compare the MAE, MAPE and RMSE
for 30-minutes-ahead prediction for different attack meth-
ods with 10% to 90% pruning ratios. The attacks from
DegreeSparse and PageRankSparse are based on graph struc-
ture, and they have similar performances on Graph WaveNet.
The attack by RandomSparse is the least effective on Graph
WaveNet. ADVERSPARSE consistently leads to the highest
errors for Graph WaveNet on both datasets for all pruning
ratios. For example, Fig 1 illustrates that when compared
to other baselines, ADVERSPARSE requires less noise (cor-
responding to a smaller pruning ratio) to achieve the same
adversarial effect on the performance of Graph WaveNet.

4. CONCLUSION

Graph WaveNet is the state-of-the-art for spatial-temporal
graph modeling. In Graph WaveNet, an adjacency matrix can
capture explicit spatial dependencies while a learnable self-
adaptive adjacency matrix can discover and model the spatial
hidden relations. In this paper, we propose ADVERSPARSE to
illustrate that when key connections are removed in networks,
the hidden spatial dependencies learned by Graph WaveNet
cannot mitigate the loss of such connections; hence, increas-
ing prediction errors. Experimental results on real-world
datasets demonstrate that ADVERSPARSE leads to higher
prediction errors on Graph WaveNet compared to random
noise, degree-based noise, and PageRank-based noise.
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