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Abstract. Link prediction has attracted attention from multiple
research areas. Although several – mostly unsupervised – link predic-
tion methods have been proposed, improving them is still under study.
In several fields of science, noise is used as an advantage to improve infor-
mation processing, inspiring us to also investigate noise enhancement in
link prediction. In this research, we study link prediction from a data pre-
processing point of view by introducing a noise-enhanced link prediction
framework that improves the links predicted by current link prediction
heuristics. The framework proposes three noise methods to help predict
better links. Theoretical explanation and extensive experiments on syn-
thetic and real-world datasets show that our framework helps improve
current link prediction methods.

Keywords: Link prediction · Noise-enhanced methods · Graph
algorithms

1 Introduction

Link prediction is a fundamental problem in graph mining, aiming to predict the
existence of a link between two nodes in a graph. Link prediction has two main
tasks: (1) predicting the links that will be added to a graph in the future, and
(2) identifying missing links in an observed graph. Both tasks have important
applications such as in identifying interactions between proteins in bioinformat-
ics, building recommender systems, suggesting friends in social networks, and
the like.

With link prediction being useful in many applications, a large number of
link prediction algorithms have been proposed, which are different in aspects
such as performance (e.g., accuracy) and computational complexity. An alter-
native to designing a new algorithm for improving link prediction can be to
modify the input data (input graph) to such an algorithm. A common approach
to change data is to add noise. While noise is often redundant, and research often
tries to remove or reduce its effects, it has been shown to be invaluable in many
areas of science, especially in nonlinear information processing systems [3]. Noise
enhancement has long been used in physical systems as stochastic resonance and
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has also shown promise in areas such as stochastic optimization, image process-
ing, and machine learning [2,3,15]. Such benefits of adding noise have motivated
us to explore the possibility of enhancing link prediction by adding noise. Adding
noise introduces an extra step to the existing algorithms. This extra noise injec-
tion step introduces some level of randomization to link prediction algorithms. A
natural approach to introduce noise in a network is to add edges as it allows one
to systematically compare the predicted links in noisy and noiseless networks.

1 2 3 4 5 6 7 8

(a) original graph

1 2 3 4 5 6 7 8

(b) noisy train graph

Fig. 1. Original graph before (Figure a) and after (Figure b) adding noise (dashed
red edge) using the same link prediction algorithm (Adamic/Adar method). Adding
noise edge (2, 6) in Figure (b) improves link prediction performance, as observed by
the %23 and %250 increase in the values of link prediction quantitative criteria (ROC
and Average Precision, here). (Color figure online)

To provide some intuition on how adding noise can improve link prediction,
we provide an example. Consider the graph in Fig. 1a with 8 nodes and 9 edges.
We can split this graph into two subgraphs: (I) “train subgraph” with all 8 nodes
and all the 8 black edges, and (II) “test subgraph” with 2 nodes (3 and 6) and
one blue edge. We can predict the links in this graph using the Adamic/Adar
link prediction method [7], and evaluate them using metrics such as Average
Precision (AP) and ROC. Here, we obtain AP and ROC values of 0.14 and 0.76
respectively. Next, we add a single noise edge (2, 6) to the train graph (the dashed
red line) to get the noisy train graph in Fig. 1b. The same Adamic/Adar method
can be applied to predict links. The added noise not only increases the accuracy
of the predicted links (%250 increase in AP and %23 increase in ROC), but also
yields a better ranking on the edges predicted (%48 increase in Kendall’s Tau).

Noise-Enhanced Link Prediction. In this paper, we investigate noise-
enhanced link prediction. We propose a simple framework to improve the pre-
dicted links in a network by adding noise, as outlined in Algorithm 1. Our
approach first divides the original graph into two subgraphs: (1) train subgraph,
and (2) test subgraph and then applies a link prediction algorithm on the train
subgraph. After that, as our approach is iterative (to account for noise random-
ness), in each iteration, the algorithm builds a noisy network by adding noise
(edges) to the train subgraph, and predict the links in this noisy network. It
then evaluates the predicted links using some evaluation criteria on the original
test subgraph. It iterates a few times and returns the best set of predicted links,
e.g., with the best score based on some evaluation metric, as the noise-enhanced
links. Our goal is to detect better links (in terms of some evaluation metric)
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Algorithm 1. Noise-Enhanced Link Prediction
1: Input: Graph G, Noise Injection Method Noise, Link Prediction method LP,

Evaluation Metric Eval, Iterations.
2: Output: Noise-enhanced ranked links Lbest

3: Gtrain, Gtest ← Divide(G)

4: L0 ← LP(Gtrain)

5: E0 ← Eval(Gtrain, Gtest,L0)

6: Ebest ← E0, Lbest ← L0

7: for i = 1 to Iterations do
8: G̃traini ← Noise(Gtrain)
9: Li ← LP(G̃traini)

10: Ei ← Eval(G̃traini , Gtest,Li)
11: if Ei improves compared to Ebest then
12: Ebest ← Ei, Lbest ← Li

13: return Lbest

while adding limited noise, i.e., without extremely increasing the link prediction
execution time. In particular, we aim to answer two questions:

Q1. Does adding noise improve the performance of link prediction algorithms?
If yes, by how much?

Q2. Adding noise increases the cost of predicting links. Are the cost acceptable
relative to the performance improvements in predicting links? What is the
trade-off?

By addressing these questions at a high level, our framework makes the following
contributions:

1. We introduce noise-enhanced link prediction, a framework that relies on
adding noise to improve existing link prediction algorithms;

2. We propose three methods to add noise to a graph which can be translated as
a preprocessing step to improve current link prediction algorithms (Sect. 3);

3. We provide a theoretical foundation for noise-enhanced link prediction by
showing that the suggested noise injection methods improve link prediction
measures (Sect. 5); and

4. We evaluate our framework on several real-world and synthetic networks using
well-established link prediction methods. Our results show that noise helps
predict better links in networks compared to the predicted links in the original
graphs (Sect. 6).

2 Literature Review

To our best knowledge, there is no past research on adding noise to link prediction
methods. Here, we briefly review (and relate to our work) both (I) link prediction
and (II) noise-enhanced algorithms.

Link Prediction. There are two main groups of link prediction methods: unsu-
pervised and supervised. Here, we focus on unsupervised methods. These meth-
ods attempt to predict links by assigning scores to all node pairs based on net-
work structure. Unsupervised methods can be grouped into:
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I. Neighborhood-based Methods assume nodes x and y are likely to link in
the future if they share common neighbors. Let Γ (v) denote the neighbors
(adjacent nodes) of node v. Examples include:
– Common neighbors, used in many applications [7], is formulated as |Γ (x)∩

Γ (y)|.
– Jaccard’s coefficient is the probability of selecting a common neighbor

of a pair of nodes x and y among all the neighbors of nodes x and y,
formulated as |Γ (x)∩ Γ (y)|

|Γ (x)∪ Γ (y)| .
– Adamic/Adar is a well-established measure for link prediction [7].

Adamic/Adar measure is defined as
∑

z∈Γ (x)∩ Γ (y)
1

log |Γ (z)| , giving more
weight to adjacent nodes with less neighbors.

– Preferential Attachment measure assumes the probability of a new link
between nodes x and y is proportional to the number of neighbors of x
and y: |Γ (x)| · |Γ (y)|

II. Path-based Methods consider all paths in the graph including the shortest
path.
– Katz counts all paths between two nodes in the graph. The paths are

exponentially damped by their lengths giving more weights to shorter
paths. It is measured as

∑∞
l=1 βl · |path<l>

x,y |, where path<l>
x,y is the set of

all paths from x to y, and β is the damping parameter (β, l > 0).
– Hitting time is the expected number of steps needed for a random walk

to start from node x and reach node y (Hx,y). The normalized version of
hitting time in undirected graphs is NHT (x, y) = Hx,y · πy + Hy,x · πx

where π is the stationary probability of the respective node.
– Rooted PageRank is a modified version of Pagerank. In Pagerank, the

score between nodes x and y can be calculated as the stationary prob-
ability of y in a random walk that moves to a random neighbor with
probability β, returning to x with probability 1 − β. Let D be a diagonal
degree matrix, and N = D−1A be the normalized adjacency matrix, then
RPR(x, y) = (1 − β)(1 − βN)−1

– SimRank assumes the similarity of nodes depends on the similarity of
nodes that they are connected to. From a random walk viewpoint, the
SimRank score measures how soon two random walkers meet at a special
node if they both start from node x to y [9].

As our goal is to add noise to the link prediction process, we experiment with
well-known approaches from each unsupervised link prediction category as we
will discuss in our experiments.

Noise-Enhanced Systems. Noise enhances performance in many areas [3]. We
review some here:

I. Stochastic Resonance (SR) is observed when increasing random noise leads
to an increase in the signal detection performance [10]. SR is frequently
used in noise-enhanced information systems with examples in biological,
physical, and engineered systems [4,11].
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II. Image Processing also benefits from noise enhancement. Adding noise to
images before thresholding can improve the human brain’s ability to per-
ceive noisy visual patterns [17]. Noise can also improve image segmenta-
tion [6] and image resizing detection.

III. Signal Detection. Noise can help signals’ detection. For example, for detect-
ing a constant signal in a Gaussian mixture noise background, some white
Gaussian noise can improve the performance of the sign detector [5]. Addi-
tive noise can also help more efficiently detect a weak sinusoid signal [21].

IV. Optimization. Randomization helps finding optimal or near-optimal solu-
tions in search algorithms, when searching for an optimum is likely to get
trapped in local minima. For example, the randomization in Genetic Algo-
rithms [18] helps avoid self-similarity in the population [3]. Mutation is
similar to adding noise and often a suitable mutation rate can result in
performance improvement.

V. Machine Learning. Noise decreases the convergence time in many clustering
and competitive learning algorithms [15]. It also reduces the convergence
time of backpropagation algorithm while training convolutional neural net-
work [2]. This happens as backpropagation and some clustering algorithms
such as k-means which are special cases of Expectation-Maximization (EM)
algorithm [16], improves by noise enhancement.

VI. Graph algorithms. Noise can also improve graph algorithms by modifying
the input data of such algorithms. For example, it has been shown that
noise can help improve current community detection methods [1] in terms
of objective functions and similarity to ground-truth communities.

3 Noise Injection Methods

Based on Algorithm 1, our framework has three steps: adding noisy edges to
the graph, predicting links using link prediction methods, and evaluating the
predicted links via performance metrics. To analyze noise enhancement in link
prediction systematically, we experiment with various link prediction methods
and evaluation criteria. We propose three general ways to add noise to graphs.

Our noise injection methods focus on nodes with a high degree as links are
more probable to form around higher degree nodes. This will be theoretically
justified later in Sect. 5.

Therefore, we implement the following steps in the suggested noise methods :
(1) sorting nodes based on their degrees, (2) choosing the top p percent of sorted
nodes as candidates, and (3) adding edges within candidates. For adding each
edge, we select a pair of nodes (edge endpoints) from candidates. The proposed
methods differ in how these pairs of nodes are chosen.

I. Random Noise (Random). Edge endpoints are randomly selected from the
candidates. Before adding a noise edge, we check its existence in the graph. If
we select all nodes as candidates, Random simply connects nodes irrespective of
their degree.
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II. Weighted Noise (Weighted). Each node (edge endpoint) vi is selected
with probability PWeighted(vi) that depends on its degree among degrees of other
candidate nodes:

PWeighted(vi) =
di∑n
i=1 di

,

where di refers to the degree of node i, and n is the number of candidate nodes.

III. Frequency Noise (Frequency). We select nodes based on the degree dis-
tribution of the candidates, where nodes with more frequent degrees are less
likely to be selected:

PFrequency(vi) =
1 − fdi

/n

fdi
× ∑k

d=1(1 − fd/n)
, (1)

where fd is the frequency of degree d inside candidates. This method is inspired
by the observation that in most real-world networks, the degrees follow a power
law distribution.

Time Complexity. Our introduced noise methods consist of the following
time complexities in a graph with |V | nodes and |E| edges: Calculating nodes’
degrees in O(|E|), sorting nodes based on their degrees in O(|V | log |V |), choosing
candidates in O(1), computing node probabilities in O(|V |), and adding noise
edges based on node probabilities in O(|E|) (The maximum number of noise
edges is at most |E|). Hence, the final time complexity due to adding noise is
max(O|E|, O(|V | log |V |)).
Example 1. Consider the graph shown in Fig. 2 with 6 nodes {a, b, c, d, e, f} with
degrees {1, 4, 2, 2, 1, 2} and 6 edges. First, nodes are sorted based on their
degree {b, c, d, f, a, e}, and then the top %80 of these sorted nodes are chosen as
candidates {b, c, d, f}.

d

a f

e

c

b

Fig. 2. Sample graph

Finally, pairs of nodes are selected from candidates as
follows:

I. Random. Randomly connects pairs of nodes, e.g., it
may add a noise edge between nodes b and f (dashed line
in Fig. 2).

II. Weighted. Nodes with higher degrees have higher
probability to be selected. The probabilities PWeighted(vi)
for vi ∈ {b, c, d, f} are {0.4, 0.2, 0.2, 0.2}.

III. Frequency. Candidates with less frequent degrees are more probable to be
selected. So node b with degree 4 and f4 = 1 is more likely (PFrequency(b) = 0.75)
to be chosen as a source or destination node. The frequencies of other candidates
are PFrequency(c) = PFrequency(d) = PFrequency(f) = 1/12.
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Table 1. Synthetic datasets statistics

Graph model Graph size (n) Parameters

Random (n, p) 1, 000 p ∈ {0.001, 0.003, 0.006, 0.007}
Small-world (n, k, p) 1, 000 p ∈ {0.0001, 0.001, 0.01, 0.1, 1}, k = 10

Configuration (deg − seq) 1, 000 powerlaw deg − seq

Table 2. Real-world datasets

(a) Real-world Datasets Statistics.
Type Network |V | = n |E| = m Time Range Avg. Degree Clustering Coeff.

Social
Network

UCIrvine Messages [14] 1899 15587 2008/03-2008/07 16.4 0.109
Bitcoin 3783 14124 2010/11-2016/01 7.46 0.176
Internet growth [12] 25526 52412 2004/01-2007/07 4.1 0.213
Fb Wall posts [19] 46952 876993 2004/11-2009/01 37.3 0.107

(b) Real-world Datasets details.
Network Train Time Test Time #Sample Nodes #Sample Edges
UCIrvine Messages 2008/03-2008/07 2008/08-2008/10 1899 15587
Bitcoin 2010/11-2013/12 2014/01-2016/01 3783 14124
Internet growth 2004/01-2006/12 2007/01-2007/12 8000 20310
Fb Wall posts 2004/11-2008/10 2008/11-2009/01 8000 50174

4 Experimental Setup

In this section, we describe the datasets, the proportion of noisy edges added,
data preparation, candidate size, link prediction methods, performance metrics,
and evaluation metrics.

I. Datasets. Noise impact on link prediction is studied in both synthetic and
real-world networks:
(1) Synthetic Networks. To better investigate the performance of link pre-
diction after adding noise, we evaluated our framework on synthetic graphs
generated by three network models: (1) random graphs; (2) small-world
model; and (3) configuration model. The properties of these three mod-
els are provided in Table 1. For random graphs, we used the Erdős-Rényi
graph model with n = 1, 000 nodes and edge formation probabilities equal
to {1/n, log n/n, 2 log n/n }={0.001, 0.003, 0.006, 0.007}. To create small-
world graphs, we use the Watts-Strogatz model [20]. For its parameters, we
use the suggestions provided by the authors [20], i.e., edge rewiring prob-
abilities are {0.0001, 0.001, 0.01, 0.1, 1}. Finally, we use the configuration
model [13] to create random graphs with specific degree sequences (we use
power law).
(2) Real-world Networks: Our framework is also evaluated on real-world net-
works. For systematic analysis, we use four real-world networks. Table 2a
provides the statistics of these networks.

II. Data Preparation. To ensure the data is ready for our experiments, some
processing steps are taken: (1) We select data samples for each dataset. For
sampling, we sample 8,000 nodes and all their connected edges (induced
subgraph) using Breath-First Search. For datasets with nodes less than
8, 000 nodes, we leave them as they are. The specific sample numbers are
shown in Table 2b; (2) We split the input data into training and testing sets.
This division is performed based on timestamps with a ratio of training data:
test data = 90% : 10% as shown in Table 2b.
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III. Noise Proportion. The amount of added noise (e percent) depends on the
number of edges in the graph. For example, if there are 5,000 edges in the
graph, we can add %10 of current edges (500 edges) as noise edges to the
graph. We change e values from 1% to 10% with 1% increments.

IV. Candidates Size. Based on Sect. 3, the top p percent of sorted nodes are
selected as candidates. We vary p from 10% to 100% with 10% increments.
When p = 100%, candidates contain all nodes.

V. Link Prediction Methods. We select four widely used unsupervised link pre-
diction measures: (1) Common neighbor, Adamic-Adar, and preferential
attachment from neighborhood-based methods, and (2) Katz from path-
based methods. All selected methods have shown great performance in pre-
dicting future or missing links [7].

VI. Performance Metrics. Two groups of quantitative criteria can be considered
for evaluating predicted links [8]: (1) fixed-threshold metrics, which depend
on several types of thresholds, and (2) threshold curves, which are used when
the data distribution is highly imbalanced. To evaluate the predicted links,
we choose two criteria from each of the aforementioned groups; accuracy
and F1-score from fixed threshold metrics, and Receiver Operation Char-
acteristics (ROC) and Precision-Recall (PR) from threshold curves. The
Average Precision score is also used in the experiments to summarize the
Precision-Recall curve. For calculating the above criteria, we use a cut-off
rank k to return the top-ranked results. We vary k from 20% to 100% of
test edges with 20% increments. We also evaluate Kendall’s τ coefficient
to measure the ordinal association between the ranked predicted links and
test edges.

VII. Evaluation Metrics. To assess noise enhancement, we measure the following
for each link prediction performance metric:

– Expected First Success (EFS) is the expected number of times that we
require to add noise to the graph to ensure that we improve the predicted
links at least once. For example, if we predict better links in 45 tests out of 100
tests, the expected first success is 3 as 100

45 � 2.22. Formally, for performance
metric m:

EFSm =
⌈

number of test
successful tests

⌉

– Relative performance Improvement (RPI) is the relative performance
metric value improvement after noise enhancement:

RPIm =
mnoise-enhanced − moriginal

moriginal
× 100

Before performing the experiments, we show that these link prediction similarity-
based scores can in theory be improved after adding noise.
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5 Theoretical Analysis

Although empirical studies [7] show that the similarity-based measures for link
prediction work well on different graphs, but there should be still ways to
improve the scores. In this section, we show that all similarity-based scores can
be improved by adding noisy edges between high degree nodes. To simplify, con-
sider graph G with |v| = n nodes, E edges, and two nodes i and j. Let Γ (i)
denote the set of neighbors of i and Γ (j) the set of neighbors of j. For ease of
presenting the proofs and without loss of generality, denote HighDegree as the
set of nodes with higher degrees compared to that of other nodes (this can be
formalized). Let i ∼ j denote nodes i and j are linked.

Theorem 1 (Common Neighbor Score Change). Connecting two High-
Degree nodes can increase common neighbor score the most.

Proof. There are two ways to look at this. First, consider adding edges between
pairs of nodes to increase the common neighbor score. How we can increase
CN(i, j)? This increase is possible by (1) connecting neighbors x of i to j, i.e.,
x ∼ j, such that x ∈ Γ (i); or (2) neighbors y of j to i, i.e., y ∼ i, y ∈ Γ (j). How
can we form edges to increase common neighbors of more nodes? If we select
neighbors x and y such that x, y ∈ HighDegree, more nodes find common
neighbor with j and i. Similarly, if j, i ∈ HighDegree, we will also increase the
common neighbor of more nodes (i.e., i and j now act as the common neighbors).
Therefore, connecting two HighDegree nodes, x ∼ j and y ∼ i, increases
common neighbor scores among more node pairs in G.

Secondly, we can show this property relatively compared to edges between
lower degree nodes. Consider i, j ∈ HighDegree and i′, j′ /∈ HighDegree ,
then i ∼ j increases common neighbor scores more compared to i′ ∼ j′. This is
because the edge i ∼ j increases score for all CN(k, j), k ∈ Γ (i) and CN(i, l),
l ∈ Γ (j). Similarly, edge i′ ∼ j′ increases CN(k′, j′), k′ ∈ Γ (i′) and CN(i′, l′),
l′ ∈ Γ (j′). Since |Γ (i)| > |Γ (i′)| and |Γ (j)| > |Γ (j′)|, i ∼ j can increase the
common neighbor score between more nodes in G compared to i′ ∼ j′.

Theorem 2 (Adamic/Adar Score Change). Connecting two HighDegree
nodes can increase the Adamic/Adar score the most.

Proof. Adamic/Adar score sums up the degree of common neighbors by giving
more weight to low degree nodes and less weight to high degree nodes. Consider
connecting pairs of nodes that increase Adamic/Adar score. How can connecting
two nodes increase AA(i, j) most? This is feasible by (1) increasing CN(i, j); or
(2) minimizing the degree of common neighbor nodes (min{deg(k)|∀k ∈ Γ (i) ∩
Γ (j)}). As it is described in Theorem 1, connecting two HighDegree nodes
increases common neighbor scores among more node pairs in G. For the second
part, decreasing the degrees of common neighbor nodes is not considered in
this paper as we only add edges. As adding edges decreases the weight of the
common neighbor node in calculating Adamic/Adar score, how we can handle
this trade-off to finally increase AA(i, j)?
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We consider the worst-case scenario for AA(i, j). If x ∈ Γ (i) or x ∈ Γ (j),
then x ∼ k, k /∈ {i, j} decreases AA(i, j) by ( 1

log(|Γ (x)|) − 1
log(|Γ (x)|+1) ). This

loss can be minimized if x ∈ HighDegree since changes in logarithm value of
Γ (x) have less impact on AA(i, j) while x ∈ HighDegree compared to when
x /∈ HighDegree. Similarly, if k ∈ HighDegree, this weight difference will
be too small. Therefore, if the gain resulted by the new common neighbors is
higher than the weight loss due to current common neighbors, AA(i, j) will be
increased, which shows the power of connecting two high degree nodes to improve
Adamic/Adar score.

Theorem 3 (Preferential Attachment Score Change). Connecting two
HighDegree nodes can increase the preferential attachment score the most.

Proof. Preferential attachment selects the pair of nodes with the maximum value
of PA(i, j) = |Γ (i)| · |Γ (j)|, which indirectly implies PA(i, j) mostly chooses
nodes {i, j} ∈ HighDegree. First, consider connecting node pairs that increase
PA(i, j). How does a noisy edge increase PA(i, j)? The gain of adding noisy
edges can be calculated in two situations; 1) if we only add a noise edge x ∼ i
(x /∈ {i, j}), the gain is |Γ (i) + 1| · |Γ (j)| − |Γ (i)| · |Γ (j)| = |Γ (j)|, and 2)
if we add both noise edges x ∼ i and y ∼ j (x, y /∈ {i, j}), where the gain
will be |Γ (i) + 1| · |Γ (j) + 1| − |Γ (i)| · |Γ (j)| = |Γ (i)| + |Γ (j)| + 1. So, more
neighbors in the noisy edges’ endpoints lead to more gains in PA(i, j), and if
both {i, j} ∈ HighDegree, PA(i, j) can be increased more compared to the
situation {i, j} /∈ HighDegree.

The mentioned gains can be extended to all sources and destinations of noisy
edges, e.g., for x and y, if {x, y} ∈ HighDegree, their chance of being selected
by preferential attachment will be increased. Therefore, noise can also improve
PA(i, j) by connecting two HighDegree nodes.

Theorem 4 (Katz Score Change). linking two HighDegree nodes
increases Katz score the most.

Proof. Katz(i, j) counts all paths between two nodes and gives more weights to
shorter paths. How we can increase Katz(i, j)? This increase is possible by (1)
increasing the number of paths between i and j, or (2) making the path between
i and j shorter.

Adding a random edge can create paths that did not exist before. This ran-
dom edge can have the highest effect on Katz(i, j) if it creates a path between a
large number of nodes. As nodes in HighDegree act as hubs in the graph and
they are connected to a large number of nodes, connecting two of them (x ∼ y)
make a bridge between Γ (x) and Γ (y). As a result, not only the lengths of paths
between many nodes will be decreased, but also the number of paths between
them will be increased. So, connecting two HighDegree nodes can also increase
Katz score.
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Fig. 3. Impact of all three proposed noise methods on area under precision-recall (PR)
curve of the predicted links on Bitcoin. The average EFS = 3 and RPI = 4.2 for all
link prediction measures.It shows we only needs to add noise three times to Bitcoin to
predict better links in terms of PR.

6 Experimental Analysis

We evaluate the impact of adding noise on link prediction in both real-world
and synthetic networks.

6.1 Noise-Enhanced Link Prediction in Real-World Networks

For each network and each candidate size p, we enhance the network using
three noise methods by adding different proportions of noise e and measure
both evaluation metrics (EFS and RPI) for all performance metrics. As e varies
from 1% to 10% with 1% increments, and the experiments are done 10 times for
each e (to assess stability of the results), 100 experiments are done for each p. By
taking the average of EFS and RPI values of these 100 tries, the results of adding
different proportions of noise for each candidate size p can be summarized by
a number. The results of both evaluation metrics (RPI and EFS) on different
candidate sizes, for each dataset and performance metric, can be summarized
using 6 plots as shown as an example in Fig. 3. The figure shows the impact of all
three proposed noise methods on the area under precision-recall (PR) curve of
the predicted links on Bitcoin dataset. As shown in the figure, EFS is on average 3
for all link prediction measures, so on average, one only needs to add noise three
times to Bitcoin to predict better links in terms of PR. The average RPI(= 4.2)
for PR curve is also shown in Fig. 3. It is interesting that Katz works very well
with noise in Fig. 3 with Low EFS (= 2) values and high RPI values.
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For space reasons, we summarize all results in Table 3, which provides the
average EFS and RPI of noise-enhanced link prediction methods on all real-world
networks. For each network, there are six rows, one for each performance metric.
For each network, noise method, and link prediction method, we provide both
EFS and RPI. We summarize the findings in Table 3 as follows:

– Noise-enhanced link prediction has an average EFS = 17 and RPI = 9.4 over all
networks, noise methods, link prediction methods, and performance metrics,
implying noise yields improvements.

– Weighted Noise is the best noise option for Bitcoin (EFS = 3 and RPI = 3.5),
and Internet growth (EFS = 2 and RPI = 16). Frequency Noise performs the
best on UCIrvine Messages (EFS = 4 and RPI = 29) and Random Noise is
the best noise choice for Fb Wall posts (EFS = 4 and RPI = 2.3). In overall,
Weighted is the first noise priority to apply on a real-world social network;
and

– Each link prediction method works best with a specific type of noise: (1)
Common neighbor improves more with Frequency Noise and Weighted Noise,
where for Frequency: (EFS = 5, RPI = 2.8), and for Weighted: (EFS =
5, RPI = 1.8). These numbers are the average values for the area under
curve of ROC, accuracy, F1-score, Precision-Recall, average-precision, and
Kendal’s tau; (2) Adamic/Adar improves more with Frequency Noise and
Random Noise, where for Frequency: (EFS = 4, RPI = 7.1), and for Random:
(EFS = 7, RPI = 7.2); (3) Preferential-Attachments improves more with Ran-
dom Noise and Weighted Noise, where for Random: (EFS = 3, RPI = 10.7), and
for Weighted: (EFS = 7, RPI = 11.9); (4) Katz improves best with Weighted
Noise, where for Weighted: (EFS = 3, RPI = 23.1).

Table 3. Expected First Success (EFS) and Relative Performance Improve-
ment (RPI) of noise-enhanced link prediction methods on 4 real-world networks.
These numbers show that noise-enhanced link prediction has an average EFS = 17 and
RPI = 9.4 over all networks, noise methods, link prediction methods, and performance
metrics.

Network
Dataset

Performance
Metric

Random Noise Weighted Noise Frequency Noise
CommonNeighbor Adamic/Adar PreferentialAttach Katz CommonNeighbor Adamic/Adar PreferentialAttach Katz CommonNeighbor Adamic/Adar PreferentialAttach Katz
EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI

IrvineMessages

ROC-AUC 5 1.7 3 4.3 4 2 3 7.3 2 9.7 2 14.5 2 4.2 6 13.1 2 9.5 2 15 2 2.5 5 35.5
AveragePrecision 4 3.4 3 5.8 5 1.2 3 41.32 29 2 33.9 2 14.2 6 62 2 28 2 35.7 2 17.9 5 93.1
Acurracy 11 8.3 19 4.4 17 6.2 32 2.2 8 11.9 8 11.8 9 12.6 15 5.3 4 28 5 20.5 6 10.9 8 11.8
PR-AUC 4 3.4 3 5.6 5 1.1 3 54.3 2 29 2 33.8 2 13.9 6 77 2 30 2 36.9 2 17.8 5 122.7
F1-score 11 8.3 19 4.4 17 6.2 32 2.2 8 12 8 11.7 9 12.5 15 5.2 4 27 5 20.4 6 10.8 8 11.8
kendall’s tau 4 95 3 34.6 3 3 3 5.9 2 576 2 80 2 7.7 6 7.4 2 670 2 84.7 2 0.1 5 4.2

Bitcoin

ROC-AUC 6 0.5 3 0.7 2 2.3 2 1.5 2 3 3 1.4 2 3.4 2 3.7 3 1.8 3 1 2 3.8 2 4.8
AveragePrecision 3 0.4 3 1 2 0.6 2 7.7 4 1.8 3 1.5 2 7.7 2 12.3 5 1.3 4 1.2 2 4.7 2 10.8
Acurracy 6 0.5 4 0.9 6 0.7 4 0.8 5 0.9 4 1.2 3 3 3 1.7 6 0.7 7 0.7 3 3.2 6 0.8
PR-AUC 3 0.4 3 0.9 2 0.5 2 7.3 3 3 4 1.2 2 7.4 2 11.2 4 2.6 5 0.8 2 4.5 2 9.8
F1-score 6 0.51 4 0.8 6 0.7 4 0.7 5 0.88 4 1.2 3 2.9 3 1.6 6 0.74 7 0.6 3 3.1 6 0.8
kendall’s tau 2 5.8 3 3.8 2 88.4 2 5.3 2 19.4 3 7.4 2 125 2 12.6 3 10 3 4.8 2 155.9 2 16.3

Internet-growth

ROC-AUC 3 0.4 2 1.1 2 2.4 2 0.8 2 5.5 2 5.4 2 5 7 0.5 2 3.9 2 4.8 2 5.3 9 0.4
AveragePrecision 2 0.45 2 0.9 2 1 2 5.8 2 35 1 44 2 32.9 3 9.2 2 16.5 2 20.7 2 10 4 6.3
Acurracy 8 0.37 4 1 3 2.4 5 0.5 2 8.3 2 8.2 2 10.4 2 7 2 10.3 2 9.8 2 6.7 2 6
PR-AUC 3 0.26 2 0.8 2 1 2 5.2 2 34 1 43 2 32.7 3 8.3 2 16 2 21.1 2 9.9 4 5.8
F1-score 8 0.36 4 1 3 2.3 5 0.5 2 7.9 2 7.9 2 9.9 2 6.7 2 10 2 9.4 2 6.4 2 5.7
kendall’s tau 3 8.1 2 24 2 27 2 24 2 96 2 162 2 75147 7 6.4 2 103 2 157 2 116 11 2.5

Facebook

ROC-AUC 2 1.2 3 0.7 2 5.8 2 1.2 3 1.4 3 0.8 2 6.8 3 2.9 3 1.6 4 0.6 2 13.9 2 13.8
AveragePrecision 2 0.8 3 0.5 2 7.6 2 7.5 5 2.1 4 0.4 2 13.8 3 5.7 7 3.4 15 0.7 2 127 7 5.8
Acurracy 9 0.21 6 0.43 6 2.9 9 0.26 151 0.01 11 0.24 4 5.2 23 0.12 334 0.009 239 0.01 2 30 455 0.008
PR-AUC 2 0.85 3 0.48 2 6.5 2 5.7 4 1.3 5 0.42 2 11.7 3 4.4 7 2.8 15 0.78 2 145 8 4.1
F1-score 9 0.2 6 0.42 6 2.9 9 0.25 151 0.01 11 0.23 4 5.1 23 0.11 334 0.009 239 0.01 2 29 455 0.007
kendall’s tau 2 7.6 3 7 2 34.6 2 5.2 4 7.1 3 8 2 42 2 11.7 4 7.5 6 3.8 2 223 2 54
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Table 4. Expected First Success (EFS) and Relative Performance Improve-
ment (RPI) of noise-enhanced link prediction on networks generated by the configu-
ration model with n = 1, 000 nodes. Link prediction methods perform well on configu-
ration graphs after adding noise with an average EFS = 3 and RPI = 4.21.

Network
Dataset

Performance
Metric

Random Noise Weighted Noise Frequency Noise
CommonNeighbor Adamic/Adar PreferentialAttach Katz CommonNeighbor Adamic/Adar PreferentialAttach Katz CommonNeighbor Adamic/Adar PreferentialAttach Katz
EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI

n = 1000

ROC-AUC 3 1 2 2 4 0.83 2 3.85 2 2.7 2 2.57 3 0.84 2 5.7 3 2 2 2.4 3 0.94 2 7
AveragePrecision 3 1.23 2 3.36 5 0.33 2 7.16 2 6.7 2 7.08 2 2.89 2 11.7 2 4.57 2 6.78 2 3.4 2 10.91
Acurracy 3 2.19 3 2.11 3 1.83 3 2.23 3 2.33 2 3.77 2 3.24 2 4 3 2.36 3 2.68 2 2.79 3 2.46
PR-AUC 2 1.73 2 4.41 5 0.43 2 6.9 2 7.94 2 8.73 2 3.4 2 11.28 2 5.49 2 8.57 2 3.99 2 10.46
F1-score 3 1.92 3 1.83 3 1.52 3 1.96 3 2 2 3.25 2 2.7 2 3.56 3 2.04 3 2.31 2 2.3 3 2.16
kendall’s tau 3 3.23 2 7.37 4 2.81 2 4.4 2 8.01 2 9.91 3 3.2 2 6.73 3 4.79 2 8.83 3 3.41 2 9.3

Table 5. Expected First Success (EFS) and Relative Performance Improve-
ment (RPI) of noise-enhanced link prediction methods on random networks with edge
formation probability p ∈ {0.006, 0.007}. The noise-enhanced link prediction obtains
the average EFS = 71 and RPI = 19.2 over all measures and noise methods on random
graph models with n = 1000 nodes.

Network
Dataset

Performance
Metric

Random Noise Weighted Noise Frequency Noise
CommonNeighbor Adamic/Adar PreferentialAttach Katz CommonNeighbor Adamic/Adar PreferentialAttach Katz CommonNeighbor Adamic/Adar PreferentialAttach Katz
EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI

p = 0.006

ROC-AUC 23 5E-5 23 1.59 6 5.21 30 4E-3 72 0.2 7 4.24 28 3E-3 112 0.21 16 1.9
AveragePrecision 23 4E-5 56 1.93 6 53.83 30 3E-5 72 0.52 7 70.83 28 3E-5 201 0.45 16 15.31
Acurracy 23 3E-5 77 0.8 63 1.1 30 2E-5 72 0.4 59 0.7 28 2E-5 201 0.2 201 0.2
PR-AUC 23 2E-5 56 2.61 6 55.39 30 1E-5 72 0.96 7 95.51 28 1E-5 201 0.64 16 15.77
F1-score 23 6E-5 77 0.8 63 1.1 30 4E-5 72 0.4 59 0.7 28 4E-5 201 0.2 201 0.2
kendall’s tau 19 1.24 6 32.15 126 0.25 8 26.02 167 0.26 - - 17 12.12

p = 0.007

ROC-AUC 5 6.03 59 1.08 2 59.92 91 0.21 251 1.32 2 67.66 9 2.66 251 0.03 2 91.82
AveragePrecision 36 1.76 53 0.49 2 107.19 21 12.38 143 0.37 2 90.34 48 0.48 251 0 2 204.64
Acurracy 51 1.75 91 1.1 36 2.9 21 4.3 143 0.7 44 2.6 77 1.2 501 0.2 51 2
PR-AUC 46 1.28 51 0.76 2 116.44 20 126.51 126 0.65 2 95.55 72 0.28 167 0.04 2 237.87
F1-score 51 1.74 91 1.1 36 2.89 21 4.28 143 0.7 44 2.59 77 1.2 501 0.2 51 1.99
kendall’s tau 5 203.18 59 0.1 2 52.59 112 3.19 251 0.64 2 62.47 9 21.12 251 0.02 2 67.58

Table 6. Expected First Success (EFS) and Relative Performance Improve-
ment (RPI) of noise-enhanced link prediction methods on small-world networks with
edge rewiring probability p = 1. The average (EFS, RPI) of the introduced framework is
(5,54) for all measures and noise methods in small-world graphs with n = 1000 nodes.

Network
Dataset

Performance
Metric

Random Noise Weighted Noise Frequency Noise
Adamic/Adar CommonNeighbor Katz PreferentialAttach Adamic/Adar CommonNeighbor Katz PreferentialAttach Adamic/Adar CommonNeighbor Katz PreferentialAttach
EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI EFS RPI

p = 1

ROC-AUC 4 2.2 4 9.82 3 39.33 2 44.51 21 2.3 4 9.9 3 42.94 2 44.93 8 3.54 4 11.87 3 0.03 2 42.33
AveragePrecision 5 11.03 4 27.36 3 38.67 2 285 5 26.43 4 24.37 3 42.48 2 194 4 40.44 6 19.88 3 2.E-4 2 192
Acurracy 6 3.82 6 12.3 3 9.5 5 19.2 5 13.55 6 10.4 3 13 4 21.5 5 16.1 8 8.35 3 1E-4 5 19.55
PR-AUC 6 134.6 4 25.52 3 45.6 2 370 5 264 4 21.97 3 54.35 2 235 4 60.31 6 19.7 3 1E-4 2 194
F1-score 6 3.8 6 12.24 3 9.4 5 19.09 5 13.49 6 10.35 3 12.96 4 21.38 5 16.8 8 8.3 3 2E-4 5 19.4
kendall’s tau 8 49 4 68 9 11.6 2 231 9 33 4 74.8 8 13.1 2 209 10 47.7 4 74.8 - - 2 209

6.2 Noise-Enhanced Link Prediction in Synthetic Networks

This section evaluates noise-enhanced link prediction on synthetic graphs gener-
ated by different graph models to address the following questions: (1) which link
prediction measure works best under noise?; (2) which noise-enhanced measure
performs the best for each network model? (3) Which type of network model in
general yields better results? Which one has the worst results? To answer these
questions, we provided the results in two parts: 1) Tables including statistics on
EFS and RPI values after adding noise; and 2) Tables qualitatively summarizing
the results of all measures and noise methods. We explain these two parts in
detail.

Quantitative Tables. For space reasons, we summarize synthetic networks’
results in Tables 4, 5, and 6, which provides the average EFS and RPI of noise-
enhanced link prediction methods on configuration model, random model, and
small-world model graphs. For each network, noise method, and link prediction
method, we provide both EFS and RPI of each performance metric. Gray cells
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indicate that the specific link prediction method did not improve with the specific
noise method. We summarize the findings in Table 4, 5, 6 for each model as
follows:

I. Configuration Model. Table 4 provides the results of noise-enhanced link pre-
diction as follows:

– Noise-enhanced link prediction obtains an average EFS = 3 and RPI = 4.21
over configuration model networks, link prediction methods, noise methods,
and performance metrics, indicating that noise is always able to predict better
links in configuration model graphs.

– Although Weighted Noise is the best noise method for improving the link pre-
diction in configuration model (average EFS = 3 and RPI = 5.18), Frequency
and Random also perform very well (Random: EFS = 3 and RPI = 2.78, and
Frequency EFS = 3 and RPI = 4.68).

– Katz works better under noise (EFS = 3, RPI = 6.23). Noise can also improve
preferential attachment (EFS = 4, RPI = 2.27), but works worse than other
measures. Adamic/Adar and common neighbor also show good performance
after adding noise (EFS = 3, RPI = 3.46).

II. Random Graphs. Table 5 represents the results of our noise-enhanced frame-
work as follows:

– For random graphs, our framework obtains the average EFS = 71 and RPI =
19.2 over all measures and noise methods when the edge formation probability
p ∈ {006, 0.007}. When p ∈ {0.001, 0.003}, the noise-enhanced framework
poorly works.

– Random Noise works the best with link prediction measures (EFS = 37, RPI =
20), and Frequency Noise works the worst for link prediction measures (EFS =
113, RPI = 18).

– Katz shows the best performance after adding noise (EFS = 30, RPI = 46) and
Adamic/Adar shows the worst (EFS = 147, RPI = 0.6). Common neighbors
also improves (EFS = 36, RPI = 10.9).

III. Small-world model. Table 6 represents the results of noise-enhanced frame-
work as follows:

– The average (EFS, RPI) is (5,54) when edge rewiring probability p equals 1 in
small-world graphs for all measures and noise methods.

– When 0.01 <= p <= 0.1 (sweet spot), only Frequency Noise can perform well
(EFS, RPI)=(2, 0.03). Weighted and Random perform poorly. For p = 1, all the
noise methods work well (Random=(EFS = 5, RPI = 61), Weighted=(EFS =
6, RPI = 58)), Frequency=(EFS = 5, RPI = 41)).

– When 0.01 <= p <= 0.1 (sweet spot), Adamic/Adar works the best after
adding noise (EFS = 2, RPI = 0.08), and Katz works the worst (EFS =
2, RPI = 0.007). Common neighbors and preferential attachment with the
average (EFS = 2, RPI = 0.06) also perform well with noise-enhancement. For
p = 1, Katz performs the best after noise with the average EFS = 3, RPI = 132.
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Qualitative Table. Tables 7a and 7b summarize all statistics and figures.
Table 7a answers the question on the type of noise that works best under each
network model. As shown in Table 4, the configuration model works very well
with all types of noise; noise should be ordered as Weighted, Frequency, and
Random for best performance. The noise method performing best for small-world
graphs is different for edge rewiring probability p = 0.1 and p = 1. When
p <= 0.1, only Frequency performs well and using Weighted, and Random is not
recommended. For p = 1, best methods can be ranked as Random, Frequency,
Weighted. Note that Frequency, and Weighted are both our second priority as
they are not very different. For random graphs, the noise ranking is: Random,
Weighted, and Frequency. Table 7b answers the question on the type of noise-
enhanced link prediction measures that work best under each type of graph.
Although all measures work well for the configuration model, Katz works slightly
better. Link prediction measures’ ranking on noisy Random graphs is Katz,
Common neighbor, and Adamic/Adar. Katz also works the best on noisy small-
world graphs with p = 1, but performs the worst when p < 0.1. According to
this table, Katz works well on all noisy graph models except for small-world
networks’ sweet-spot.

Table 7. Synthetic networks results

(a) Which type of noise works best for each net-
work model?
Models Parameters Noise Priority Ranking
Random(n, p) all p Random(1st) Weighted(2nd) Frequency(3rd)

Small-world
p <= 0.1 Frequency(1st) Weighted(2nd) Random(3rd)
p = 1 Random(1st) Frequency(2nd) Weighted(2nd)

Configuration Powerlaw Weighted(1st) Frequency(2nd) Random(3rd)

(b) Which noise-enhanced link prediction mea-
sures works best for each type of graph?
Models Parameters Noise-enhanced link prediction methods Ranking
Random(n, p) all p Katz(1st) CN(2nd) AA(3rd) -

Small-world
p <= 0.1 AA(1st) CN(2nd) PA(3rd) Katz(4th)
p = 1 Katz(1st) PA(2nd) CN(3rd) AA(4th)

Configuration Powerlaw Katz(1st) AA(2nd) CN(3rd) PA(4th)

7 Conclusions

We proposed a framework to improve link prediction by adding noise to networks.
The noise-enhanced framework adds a preprocessing phase before applying the
existing link prediction methods to modify the input network. We introduced
three noise methods to add noisy edges to the graph by considering nodes with
high degrees as noisy edges’ endpoints. Both theoretical and experimental results
show that our framework can help the current link prediction methods predict
better links in terms of performance metrics in both real-world and synthetic
datasets.
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