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ABSTRACT

Network representation learning has played a critical role in study-

ing networks. One way to study a graph is to focus on its spectrum,

i.e., the eigenvalue distribution of its associated matrices. Recent

advancements in spectral graph theory show that spectral moments

of a network can be used to capture the network structure and vari-

ous graph properties. However, sometimes networks with different

structures or sizes can have the same or similar spectral moments,

not to mention the existence of the cospectral graphs. To address

such problems, we propose a 3D network representation that relies

on the spectral information of subgraphs: the Spectral Path, a path
connecting the spectral moments of the network and those of its

subgraphs of different sizes. We show that the spectral path is in-

terpretable and can capture relationship between a network and

its subgraphs, for which we present a theoretical foundation. We

demonstrate the effectiveness of the spectral path in applications

such as network visualization and network identification.

CCS CONCEPTS

• Mathematics of computing → Spectra of graphs; • Human-
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1 INTRODUCTION

Ideally, a network representation should be both informative for

machine learning and interpretable for users. Therefore, spectral
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Figure 1: Spectral Paths of YouTube and Bio-Grid-Human

graph theory has been widely used to study a graph as it connects

the structure of a network to the eigenvalues and eigenvectors of

its associated matrices, e.g., the adjacency matrix or the Laplacian.

Spectral methods have classically focused on the extreme eigenval-

ues and associated eigenvectors. Well-known examples include the

Cheeger’s inequality, which relates the second-smallest eigenvalue

of a graph Laplacian to graph connectivity [5], and the inverse of

the largest eigenvalue of the adjacency matrix (epidemic threshold),
which determines whether a virus can spread or die out in a net-

work [4]. Recently, instead of the extreme eigenvalues, the overall

distribution of eigenvalues, also known as the spectral density, has
received more attention [8, 17]. To clearly represent a network

with its spectral density, one can rely on its spectral point [10].
The spectral point of a network represents it with the low-order

spectral moments as moments are often used to capture the shape

of a distribution in statistics. Specifically, spectral moments of the

random walk transition matrix can be used, as these moments (1)

have a very clear meaning, which is the expected return probability

of a random walk; and (2) have theoretical connections to the net-

work structure and various network properties such as the degree

distribution and clustering coefficient [10]. However, there are a

few drawbacks in using the spectral density (or spectral moments)

as a representation of a graph: (1) in theory, different graphs can

have the same spectral density. It is not difficult to construct such

graphs. One way is to make a copy of a graph and take its union

with the original graph. In this way, one doubles the size of the

graph, but the spectral density does not change. Moreover, there

exist non-isomorphic graphs sharing the same graph spectrum

(i.e. cospectral or isospectral graphs) [19]; (2) the spectrum may

dramatically change with a small change in graph structure [23].
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To address these problems, we propose utilizing the spectral

information of subgraphs. In this work, we propose to represent a

graph using a 3D path in the spectral embedding space, which we

denote as the Spectral Path. The spectral path connects the spectral

moments of a network and its subgraphs. Figure 1 plots the spectral

paths of a social network (YouTube) and a biological network. As we

can see, though their spectral points of the whole networks (marked

with *) are close, their spectral paths show different patterns.

Graph A Graph B

Figure 2: Cospectral Graphs

Our idea is inspired by the

Reconstruction Conjecture, which
is an open problem in theoreti-

cal computer science. The recon-

struction conjecture — initially

due to Kelly [11] and Ulam [11,

16, 21] — states that graphs are determined uniquely by their sub-

graphs. Bollobás has shown that the probability that a randomly cho-

sen graph on𝑛 vertices is not reconstructible goes to 0 as𝑛 → ∞ [1].

In other words, almost all graphs are reconstructible with their sub-

graphs. Naturally, by using the spectral density of subgraphs to

capture subgraph information, one can better represent the whole

graph. Figure 2 provides an example of two graphs that share the

same spectral density but their subgraphs do not necessarily do so.

In Figure 2, graphs𝐺𝐴 and𝐺𝐵 have the same graph spectrum of the

random walk transition matrix: [−1, 0, 0, 1]. Hence, they also have

the same spectral moments; for example, the second moment𝑚2

of their spectrum is𝑚2,𝐴 =𝑚2,𝐵 = 1

2
. If we randomly remove one

node (and edges connected to it) from 𝐺𝐴 , we get some subgraph

𝐺𝐴′ . Subgraph 𝐺𝐴′ is 100% likely to be isomorphic to , whose

spectrum is [−1, 0, 1] and its second spectral moment is
2

3
. How-

ever, if we randomly remove one node from𝐺𝐵 and get a subgraph

𝐺𝐵′ , with 75% probability, we get , and with 25% probability, we

get an empty graph of 3 nodes whose spectrum is [0, 0, 0] and its

second spectral moment is 0. Therefore, though 𝐺𝐴 and 𝐺𝐵 are

cospectral graphs, they have a different distribution of (second)

spectral moments across all the subgraphs by randomly removing

one node. If we take the expectation of the second spectral mo-

ment of 𝐺𝐴′ (or𝐺𝐵′ ) over the distribution of the subgraphs, we get

E(𝑚2,𝐴′) = 2

3
× 100% = 2

3
, but E(𝑚2,𝐵′) = 2

3
× 75%+ 0× 25% = 1

2
. In

expectation, if we randomly remove one node, the second spectral

moment of 𝐺𝐴 will increase by
1

6
but the second spectral moment

of 𝐺𝐵 will not change. In Section 6, we will provide a detailed

theoretical analysis. These observations indicate that even if two

networks have similar spectral density, one can capture their dif-

ference in terms of substructures by using the expected spectral

points (moments) of their subgraphs.

Overall, our contributions are mainly the following:

1. Spectral Path.Wepropose representing a network using its Spec-
tral Path: a path connecting the spectral moments of the network

and its subgraphs. Spectral paths provide an interpretable-by-design
network representation.

2. Interpretability of Spectral Path.We study the interpretability

of spectral paths by investigating the shapes of spectral paths. We

provide the theoretical relationship between the spectral moments

of a network and those of its subgraphs. We show how this relation-

ship is closely related to the network structure. To the best of our

knowledge, this work is the first to explore spectral moments of

subgraphs and to study the relationship between spectral moments

of subgraphs and those of the whole network.

3. Spectral Path Applications.We show that spectral path can

be used for applications such as network visualization and network

identification, i.e., identifying the source of an anonymized graph.

4. Spectral Paths of Cospectral Graphs.We theoretically explore

the possibility of using the expected spectral moments of subgraphs

to help distinguish cospectral graphs.

Organization. In Section 2, we detail the preliminaries including

the random walk transition matrix and its spectral moments. In Sec-

tion 3, we present the algorithm to build a spectral path. In Section

4, we demonstrate the theoretical interpretation of spectral paths.

We also present the relationship between the spectral moments of

a network and its subgraphs, and how spectral paths are connected

to the network structure. In Section 5, we show that spectral paths

can be used for network visualization and network identification

(that is, answering questions such as “Is this anonymized graph

sampled from Twitter?"). Section 6 demonstrates how spectral paths

provide a potential way to distinguish cospectral graphs. We review

additional related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES AND NOTATION

Random Walk Transition Matrix and Normalized Laplacian.

For an undirected graph𝐺 = (𝑉 , 𝐸) with vertices𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛}
and edges 𝐸 ⊆ 𝑉 ×𝑉 , its adjacency matrix 𝐴 ∈ R𝑛×𝑛 has 𝐴𝑖 𝑗 = 1

if (𝑖, 𝑗) ∈ 𝐸 and otherwise, 𝐴𝑖 𝑗 = 0. The degree matrix 𝐷 ∈ R𝑛×𝑛
is a diagonal matrix with node degrees on its diagonal, i.e. 𝐷𝑖𝑖 =∑𝑛

𝑗=1𝐴𝑖 𝑗 . The transition matrix of the random walk on 𝐺 is matrix

𝑃 = 𝐴𝐷−1
. The spectrum of a matrix is the set of its eigenvalues.

As 𝑃 is a stochastic matrix, it has a bounded spectrum: 1 = 𝜆1 ≥
𝜆2 ≥ · · · ≥ 𝜆𝑛−1 ≥ 𝜆𝑛 ≥ −1, where 𝜆𝑖 ’s are the eigenvalues of 𝑃 .
The normalized Laplacian of 𝐺 is the matrix 𝐿 = 𝐼 − 𝐷− 1

2𝐴𝐷− 1

2 .

The spectrum of a matrix is the set of its eigenvalues. The spectrum

of the normalized Laplacian is also bounded, i.e. 0 = 𝜇1 ≤ 𝜇2 ≤
· · · ≤ 𝜇𝑛−1 ≤ 𝜇𝑛 ≤ 2, where 𝜇𝑖 ’s are the eigenvalues of 𝐿. As 𝑃 is

similar to 𝐷− 1

2𝐴𝐷− 1

2 (i.e., they have the same eigenvalues), it is

easy to find the relationship between the eigenvalues of 𝑃 and 𝐿:

𝜆𝑖 = 1 − 𝜇𝑖 , for 1 ≤ 𝑖 ≤ 𝑛.
Spectral Moments and Spectral Points. We denote the ℓ-th

spectral moment𝑚ℓ of a graph𝐺 using the spectrum of its random

walk transition matrix 𝑃 ,𝑚ℓ = E(𝜆ℓ ), as 1

𝑛

∑𝑛
𝑖=1 𝜆𝑖

ℓ = E(𝜆ℓ ). Note
that𝑚1 = 0. To allow interpretable visualization, one can use a 3D

spectral point to represent a network, i.e., representing a network

using its second, third, and forth spectral moments (𝑚2,𝑚3,𝑚4).

3 SPECTRAL PATH

Here, we introduce the proposed network representation: the spec-
tral path of a graph, which represents a network with the path

connecting the spectral moments of a network and its subgraphs.

The following simple steps can help build a spectral path:
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Step 1: Sample many subgraphs from the network

Step 2: Estimate the expected spectral points using the spec-

tral points of samples

Step 3: Form a spectral path by connecting the expected

spectral points

The pseudocode is in Algorithm 1. The algorithm uses Random
Node Sampling [12] to sample subgraphs from the network by (1)

varying the proportion of nodes from 0% to 100%with step size 𝑠 and

(2) taking 𝑡 independent samples for each proportion. We use Ran-

domNode Sampling as the subgraph can be viewed as a result of ran-

domly removing nodes from a graph. For each sample and the whole

network, the algorithm computes its spectral point (𝑚2,𝑚3,𝑚4). For

all samples of the same size (sampling proportion 𝑝), the algorithm

takes the average of their spectral points to estimate the expected

spectral points. Hence, we get one (expected) spectral point for

each sampling proportion 𝑝 . Finally, it draws a path connecting the

expected spectral points from 100% → · · · → 2𝑝% → 𝑝%. Figure 3

illustrates the spectral path of YouTube with the spectral points of

the samples. The figure shows that the spectral path can capture

structural variations in subgraphs of different sizes.

Time Complexity. The majority of the computation time is dedi-

cated to sampling subgraphs and computing three spectral moments

for each subgraph. For one subgraph, random node sampling takes

O(𝑛 +𝑚) where |𝑉 | = 𝑛 and |𝐸 | =𝑚. For large graphs, we compute

accurate estimates of the low-order moments with the ApproxSpec-

tralMoment algorithm [7]. The algorithm estimates the moments

by simulating many random walks and computes the proportion

of closed walks. To compute the ℓ-th spectral moment by simulat-

ing 𝑟 random walks, it takes 𝑂 (𝑟 ℓ) time. In our case, ℓ ≤ 4 and

we set 𝑟 = 10, 000 following the empirical results of [7]. As the

random walks can be taken in parallel, it only takes less than a

few seconds to compute the three spectral moments even for large

networks [7, 10]. Hence, for each subgraph, the time complexity

is O((𝑛 +𝑚)𝑟 ℓ). We have a total of
100

𝑠 × 𝑡 + 1 graphs (a network

and its subgraphs) for which we compute spectral points. Thus, the

time complexity for computing a spectral path is O( 𝑡𝑟 ℓ𝑠 (𝑛 +𝑚)),
linear in the number of nodes and edges.

4 INTERPRETABILITY OF SPECTRAL PATHS

The interpretability of spectral path can be studied from two as-

pects (1) the location of the spectral path in the 3D embedding space.
Here, we do not focus on this aspect. As mentioned, each com-

ponent (dimension) of the spectral points is closely related to the

network structure and network properties (see examples in [10]);
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Figure 3: Spectral Path of YouTube and its sample points

Algorithm 1: Spectral Path algorithm

input :an undirected network graph: 𝐺 (𝑉 , 𝐸)
output : the Spectral Path of 𝐺 : SP𝐺
parameter :𝑠 : sampling proportion step size;

𝑡 : number of samples for one proportion;

Expected_spectral_points = { };
for ( 𝑝 = 𝑠; 𝑝 < 100%; 𝑝 = 𝑝 + 𝑠 ) {

Spectral_points = { }; %Spectral points for all the

samples for proportion 𝑝

for ( 𝑖 = 1; 𝑖 ≤ 𝑡 ; 𝑖 = 𝑖 + 1 ) {
%Sample a 𝑝% subgraph 𝐺𝑝 from 𝐺

𝐺𝑝 = RandomNodeSampling(𝐺, 𝑝);
%Compute the spectral point of 𝐺𝑝 (𝑚2,𝑚3,𝑚4)

Spectral_point = ComputeMoments(𝐺𝑃 );
Spectral_points.add(Spectral_point);

}
%Compute the average 𝑚2,𝑚3,𝑚4 for all the samples

for proportion 𝑝

Expected_spectral_point = Average(Spectral_points);
Expected_spectral_points.add(Expected_spectral_point);

}
%Compute the spectral point of 𝐺

Spectral_point = ComputeMoments(𝐺);
Expected_spectral_points.add(Spectral_point);
%Form the spectral path of the (expected) spectral

points, e.g., 100→90%. . . →10%

SP𝐺 = Form_Path(Expected_spectral_points)
return SP𝐺 ;

(2) the shape of the spectral paths, which we will focus on here. The

spectral points of different sampling sizes in the embedding space

will determine the shape of a spectral path. Hence, we study the

interpretability of spectral paths by investigating the relationship

between the spectral points of subgraphs and that of the whole

network. We start with the following questions:

I1) Direction of the movement. In which direction will the spec-

tral point of a graph move if its nodes are randomly removed (equiv-

alent to sampling a subgraph with random node sampling)? In other

words, will spectral moments increase, decrease, or stay the same?;

I2)Magnitude of the movement. How far will the spectral point

of a graph move under sampling?; and

I3) Shape of spectral paths. How do the shapes of spectral paths

reveal the structural information of a network?

To answer these three questions (I1 to I3), we need to look into

the spectral moments of subgraphs.

4.1 Second Spectral Moment of Subgraphs

We first look into the second spectral moment𝑚2 of subgraphs. In

Theorem 4.1, we show what𝑚2 of a graph is expected to be when

one node is removed, and the detailed proof is provided in Section

4.1.2. Then, we extend the result to removing 𝑘 nodes (𝑘 ≥ 1) from
a graph in Theorem 4.4.

Theorem 4.1 (Expected second spectral moment𝑚2 of sub-

graphs after removing one node). In undirected graph 𝐺 =

(𝑉 , 𝐸), where |𝑉𝐺 | = 𝑛, |𝐸𝐺 | = 𝑚, subgraph 𝐺 ′ of 𝐺 is obtained by
removing one node from𝐺 uniformly at random. The expected second
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moment of 𝐺 ′ is

E(𝑚2,𝐺′) =𝑚2,𝐺+
2

𝑛(𝑛 − 1) ·(
∑︁

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
−

∑︁
(𝑖, 𝑗) ∈𝐺

𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+𝛿triad),

where 𝑑𝑖 , 𝑑 𝑗 denote the degree of node 𝑖 and 𝑗 , and

𝛿triad =
∑︁
(𝑖,𝑗,𝑘 )

is a triad in𝐺

( 1

𝑑𝑖𝑑 𝑗 (𝑑𝑖 − 1) (𝑑 𝑗 − 1) +
1

𝑑𝑖𝑑𝑘 (𝑑𝑖 − 1) (𝑑𝑘 − 1) +
1

𝑑 𝑗𝑑𝑘 (𝑑 𝑗 − 1) (𝑑𝑘 − 1) ) .

Especially, if 𝐺 is a triangle-free graph, then E(𝑚2,𝐺′) reduces to:

E(𝑚2,𝐺′) =𝑚2,𝐺 + 2

𝑛(𝑛 − 1) · (
∑︁

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
−

∑︁
(𝑖, 𝑗) ∈𝐺

𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
)

In Figure 4, we provide an example of a triangle-free graph to

illustrate Theorem 4.1. We have a graph𝐺 with 7 nodes and 6 edges.

The label on each edge is its value of
1

𝑑𝑖𝑑 𝑗
. There are 7 subgraphs

(𝐺1, . . . ,𝐺7) by removing one node from 𝐺 . Using Theorem 4.1, we

get E(𝑚2,𝐺′) = 𝑚2,𝐺 + 2

𝑛 (𝑛−1) · (
∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
− ∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
) =

13

21
+ 2

7×6 (
1

6
+ 1

6
+ 1

4
+ 1

4
− 1) = 11

18
, which is by definition equivalent

to E(𝑚2,𝐺′) =
∑

7

𝑖=1𝑚2,𝐺𝑖

7
= [ 2

3
+ 3

4
+ 2

3
+ 3

4
+ 2

3
+ 7

18
+ 7

18
]/7 = 11

18
.

For an example of a graph with triangles, consider a complete

graph𝐾𝑛 (𝑛 > 3) as𝐺 . We get𝑛 subgraphs (𝐺1, . . . ,𝐺𝑛) by removing

one node, each also being a complete graph 𝐾𝑛−1. We know that

𝑚2,𝐺 = 1

𝑛−1 , and using Theorem 4.1, we get E(𝑚2,𝐺′) = 𝑚2,𝐺 +
2

𝑛 (𝑛−1) · (
∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
− ∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ 𝛿𝑡𝑟𝑖𝑎𝑑 ) = 1

𝑛−1 + 2

𝑛 (𝑛−1) ·

(
(𝑛
2

)
1

(𝑛−1)2 +
(𝑛
3

)
3

(𝑛−1)2 (𝑛−2)2 ) =
1

𝑛−2 , which is the𝑚2 of 𝐾𝑛−1.

4.1.1 Interpretations of Theorem 4.1. We provide interpretations

for Theorem 4.1 by answering the aforementioned questions I1 to
I3. In the proof of Theorem 4.1 (see Section 4.1.2), we partition any

edge (𝑖, 𝑗) of 𝐺 into three types based on its end-points 𝑖 and 𝑗 ’s

node degrees 𝑑𝑖 and 𝑑 𝑗 :

▶ Type I: 𝑑𝑖 = 1, 𝑑 𝑗 = 1;

▶ Type II: 𝑑𝑖 > 1, 𝑑 𝑗 = 1;

▶ Type III: 𝑑𝑖 > 1, 𝑑 𝑗 > 1.

Theorem 4.1 shows the expected𝑚2 of subgraphs when remov-

ing one node is closely related to frequencies of these three types

of edges. Next, we will take triangle-free graphs as an example

to show the interpretability of spectral paths, in terms of𝑚2. By

removing one node from a triangle-free graph 𝐺 , we get a sub-

graph 𝐺 ′
. Compared to the second spectral moment of 𝐺 ,𝑚2,𝐺′ is

expected to add the term
2

𝑛 (𝑛−1) · (
∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
− ∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
).

I1) Direction of the movement of spectral point.

The direction of the movement of spectral point (moments) is

basically the sign of the term, which is determined by the difference

between the summation of
1

𝑑𝑖𝑑 𝑗
over Type III and Type I edges. If

the difference is positive (or negative), then𝑚2,𝐺′ is expected to

increase (or decrease). Roughly speaking, if the graph 𝐺 has more

Type III edges and fewer Type I edges,𝑚2,𝐺′ is expected to increase.

I2) Magnitude of the movement of spectral point.

Similarly, how far the spectral point will move is decided by the

magnitude of the term. Besides the frequency of different types of

edges, the size of a graph 𝑛 also has an impact. When 𝑛 is larger, the

magnitude of the term is smaller, indicating that the more nodes 𝐺

has, the smaller the impact on𝑚2 when one node is removed.

I3) Shape of spectral paths.
Assume that we start with a graph with many Type III edges. If

we remove nodes one by one from it, it is very likely that (a) the

second spectral moment will increase first, as there are still many

Type III edges and the summation of
1

𝑑𝑖𝑑 𝑗
over them increases when

the node degrees decrease; (b) if we keep removing more nodes,

Type III edges get converted to Type II or Type I, which makes

the difference negative, and the second spectral moment starts to

decrease. In other words, we will see a turning point; (c) finally, the
moment will converge to 0 as more nodes are removed and the

graph becomes an empty graph. In this case, the spectral path will

show an increasing-decreasing pattern. Technically, it is possible for

the turning point to happen in samples smaller than those taken

to compute the spectral path. In that case, the spectral path will

show an increasing-only pattern. Similarly, if the starting graph has

mostly Type I edges, then the trend will be decreasing-only.
For general graphs with triangles, as theorem 4.1 shows, we need

to consider an extra term 𝛿
triad

but in general they follow a similar

pattern. These patterns will be observed in our later experiments.

4.1.2 Proof of Theorem 4.1. To prove Theorems 4.1, we need The-

orem 4.2 and Lemma 4.3.

Theorem 4.2 (Theorems 3.2, 3.3, 3.5 in [10]). The 2nd, 3rd, and 4th

spectral moments (𝑚2,𝑚3,𝑚4) of random walk transition matrix 𝑃
are𝑚2 = E(𝜆2) = E(𝑑𝑖 ) E( 1

𝑑𝑖𝑑 𝑗
),𝑚3 = E(𝜆3) = 2E(Δ𝑖 ) E( 1

𝑑ℎ𝑑𝑖𝑑 𝑗
),

and𝑚4 = E(𝜆4) = [ E(𝑑𝑖 ) + 4E
(𝑑𝑖
2

)
+ 2E(□𝑖 ) ] E( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
), where

E(𝑑𝑖 ) is the average degree, 𝑑𝑖𝑑 𝑗 follows the joint degree distribution
𝑝 (𝑑𝑖 , 𝑑 𝑗 ), E(Δ𝑖 ) is the average number of triads a node is in, 𝑑ℎ𝑑𝑖𝑑 𝑗
follows the joint degree distribution of triads 𝑝 (𝑑ℎ, 𝑑𝑖 , 𝑑 𝑗 ), E(□𝑖 ) is
the average number of squares a node is in, and 𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙 follows the
joint degree distribution of closed walks of length 4 formed by nodes
with degrees 𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘 , 𝑑𝑙 .

Note that in this theorem, for example, the term E( 1

𝑑𝑖𝑑 𝑗
) is the

expected value of
1

𝑑𝑖𝑑 𝑗
over all edges, where𝑑𝑖 and𝑑 𝑗 are the degree

of the nodes connected by some edge.

Lemma 4.3. Graph 𝐻 = (𝑉 , 𝐸) is a disjoint union of 𝑘 graphs
𝐺1,𝐺2, . . . ,𝐺𝑘−1,𝐺𝑘 , i.e., 𝐻 =

⋃𝑘
𝑖=1𝐺𝑖 . Let 𝑚ℓ,𝐺𝑖

denote the ℓ-th
spectral moment for 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ). Then, the ℓ-th spectral moment of
𝐻 is the weighted average of𝑚ℓ,𝐺𝑖

’s weighted by |𝑉𝑖 |’s, i.e.,𝑚ℓ,𝐻 =∑
𝑖 |𝑉𝑖 |𝑚ℓ,𝐺𝑖

|𝑉 | .

Proof. The lemma is a generalized version of Theorem 4.3 of

[10], if we consider any graph as a disjoint union of its connected

components. Therefore, the proof is similar. Note that one can view

the transition matrix of the random walk on 𝐻 as a block matrix

where each block represents the transition matrix of some 𝐺𝑖 . □

A special case of Lemma 4.3 is that if all graphs𝐺𝑖 have the same

order, i.e., |𝑉𝑖 | = 𝑐 , for some constant 𝑐 , then𝑚ℓ,𝐻 =

∑
𝑖 𝑚ℓ,𝐺𝑖

𝑘
.

701



A Spectral Representation of Networks: The Path of Subgraphs KDD ’22, August 14–18, 2022, Washington, DC, USA

a

b c

d

e

f

g

𝐺 : E𝐺 (𝑑𝑖 ) = 12

7
;E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) = 13

36
;𝑚2,𝐺 = 13

21

1

6

1

6

1

3

1

4

1

4
1

d

cb

e

f

g

𝐺1:𝑚2,𝐺1
= 2

3

a d

c

e

f

g

𝐺2:𝑚2,𝐺2
= 3

4

a

b

d

e

f

g

𝐺3:𝑚2,𝐺3
= 2

3

a

b c

e

f

g

𝐺4:𝑚2,𝐺4
= 3

4

a

b c

d f

g

𝐺5:𝑚2,𝐺5
= 2

3

a

b c

d

e

g

𝐺6:𝑚2,𝐺6
= 7

18

a

b c

d

e

f

𝐺7:𝑚2,𝐺7
= 7

18

Figure 4: Example of Spectral Moment of Subgraphs

Proof of Theorem 4.1.

Proof. As 𝐺 has 𝑛 nodes, we have 𝑛 choices to remove only

one node, so we can get 𝑛 possible subgraphs (𝐺 ′
). We denote

these subgraphs as 𝐺1,𝐺2, . . . ,𝐺𝑛 , e.g., 𝐺1,𝐺2, . . . ,𝐺7 in Figure 4.

Here, we aim to get the expected spectral moment of 𝐺 ′
, which is

E(𝑚2,𝐺′) =
∑

𝑖 𝑚2,𝐺𝑖

𝑛 .

We use proof by construction. Construct a new graph 𝐻 =

(𝑉𝐻 , 𝐸𝐻 ) as a disjoint union of all these subgraphs 𝐺𝑖 ’s, i.e., 𝐻 =⋃𝑛
𝑖=1𝐺𝑖 . From Lemma 4.3, we have𝑚2,𝐻 =

∑
𝑖 𝑚2,𝐺𝑖

𝑛 as each𝐺𝑖 has

𝑛− 1 nodes. Hence, deriving E(𝑚2,𝐺′) is equivalent to finding𝑚2,𝐻 .

From Theorem 4.2, we have𝑚2,𝐻 = E𝐻 (𝑑𝑖 ) E𝐻 ( 1

𝑑𝑖𝑑 𝑗
). For E𝐻 (𝑑𝑖 ),

E𝐻 (𝑑𝑖 ) =
2 · |𝐸𝐻 |
|𝑉𝐻 | =

2 · (𝑛 − 2)𝑚
𝑛(𝑛 − 1)

(as each edge of𝐺 appears 𝑛− 2 times in𝐻 , and𝐺𝑖 has 𝑛− 1 nodes.)

=
𝑛 − 2

𝑛 − 1

· E𝐺 (𝑑𝑖 ) . (1)

To derive E𝐻 ( 1

𝑑𝑖𝑑 𝑗
), we compare it to E𝐺 ( 1

𝑑𝑖𝑑 𝑗
): for any edge

(𝑖, 𝑗) of 𝐺 , there are 𝑛 − 2 copies in 𝐻 , but if the removed node is a

neighbor of 𝑖 (or 𝑗 ) in𝐺 , the degree 𝑑𝑖 (or 𝑑 𝑗 ) will decrease which

leads to an increase of
1

𝑑𝑖𝑑 𝑗
. Therefore, E𝐻 ( 1

𝑑𝑖𝑑 𝑗
) > E𝐺 ( 1

𝑑𝑖𝑑 𝑗
). To

get the exact increase quantity, we partition any edge (𝑖, 𝑗) of 𝐺
into three types based on its node degree:

▶ Type I: 𝑑𝑖 = 1, 𝑑 𝑗 = 1. For such an edge, all of its 𝑛 − 2 copies in

𝐻 have
1

𝑑𝑖𝑑 𝑗
= 1 as neither of 𝑖 and 𝑗 can lose other neighbors, so

there will be no increment;

▶ Type II: 𝑑𝑖 > 1, 𝑑 𝑗 = 1. For an edge of this type, if the removed

node is a neighbor of 𝑖 , then the edge contributes an increment

1

(𝑑𝑖−1)𝑑 𝑗
− 1

𝑑𝑖𝑑 𝑗
= 1

𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) . Among the 𝑛 − 2 copies in 𝐻 , there

are 𝑑𝑖 − 1 such cases as each neighbor of 𝑖 gets removed once, so

the overall contribution is (𝑑𝑖 − 1) · 1

𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) = 1

𝑑𝑖𝑑 𝑗
;

▶ Type III: 𝑑𝑖 > 1, 𝑑 𝑗 > 1. Assume nodes 𝑖 and 𝑗 have 𝑐𝑖 𝑗 common

neighbors. If the removed node is a neighbor of 𝑖 but not 𝑗 , then

the edge contributes an increment
1

(𝑑𝑖−1)𝑑 𝑗
− 1

𝑑𝑖𝑑 𝑗
= 1

𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) .

Among its 𝑛 − 2 copies in 𝐻 , there are 𝑑𝑖 − 1 − 𝑐𝑖 𝑗 such cases

(excluding 𝑗 and the common neighbors), so the total contribution

is

𝑑𝑖−1−𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) . Similarly, if the removed node is a neighbor of 𝑗

but not 𝑖 , the total contribution for such cases is

𝑑 𝑗−1−𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑 𝑗−1) . If the

removed node is a common neighbor of 𝑖 and 𝑗 , the increment is

1

(𝑑𝑖−1) (𝑑 𝑗−1) −
1

𝑑𝑖𝑑 𝑗
= 1

𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) +
1

𝑑𝑖𝑑 𝑗 (𝑑 𝑗−1) +
1

𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) (𝑑 𝑗−1) . As

there are 𝑐𝑖 𝑗 common neighbors, the contribution by such cases is

𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) +

𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑 𝑗−1) +

𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) (𝑑 𝑗−1) . Overall for one edge of

Type III in𝐺 , it contributes the increment:

𝑑𝑖−1−𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) +

𝑑 𝑗−1−𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑 𝑗−1) +

𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) +

𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑 𝑗−1) +

𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) (𝑑 𝑗−1) = 2

𝑑𝑖𝑑 𝑗
+ 𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) (𝑑 𝑗−1) .

Therefore, the total increment𝛿 is𝛿 =
∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ ∑
(𝑖, 𝑗) ∈𝐺

𝑑𝑖>1,𝑑 𝑗>1

( 2

𝑑𝑖𝑑 𝑗
+

𝑐𝑖 𝑗
𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) (𝑑 𝑗−1) ). We know that

∑
(𝑖,𝑗 )∈𝐺

𝑑𝑖>1,𝑑 𝑗>1

𝑐𝑖 𝑗

𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) (𝑑 𝑗−1) =

∑
(𝑖,𝑗,𝑘 ) is a triad in𝐺

( 1

𝑑𝑖𝑑 𝑗 (𝑑𝑖−1) (𝑑 𝑗−1) +
1

𝑑𝑖𝑑𝑘 (𝑑𝑖−1) (𝑑𝑘−1)
+ 1

𝑑 𝑗𝑑𝑘 (𝑑 𝑗−1) (𝑑𝑘−1)
)

and we denote it as 𝛿
triad

.

Thus, the total increment𝛿 is𝛿 =
∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+2· ∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
+

𝛿
triad

; normalized by |𝐸𝐻 |, we get

E𝐻 ( 1

𝑑𝑖𝑑 𝑗
) = E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝛿

(𝑛 − 2)𝑚 . (2)
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Next, we compute𝑚2,𝐻 using Equations 1 and 2:

𝑚2,𝐻 = E𝐻 (𝑑𝑖 ) E𝐻 ( 1

𝑑𝑖𝑑 𝑗
)

=
𝑛 − 2

𝑛 − 1

E𝐺 (𝑑𝑖 ) · (E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝛿

(𝑛 − 2)𝑚 )

=
𝑛 − 2

𝑛 − 1

E𝐺 (𝑑𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝛿 · E𝐺 (𝑑𝑖 )

(𝑛 − 1)𝑚

= E𝐺 (𝑑𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝛿 · E𝐺 (𝑑𝑖 )

(𝑛 − 1)𝑚 −
E𝐺 (𝑑𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗
)

𝑛 − 1

=𝑚2,𝐺 + E𝐺 (𝑑𝑖 )
(𝑛 − 1)𝑚 · (𝛿 −𝑚 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗
))

=𝑚2,𝐺 + 2

𝑛 (𝑛 − 1) · (𝛿 −𝑚 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗
)) (as E𝐺 (𝑑𝑖 ) =

2𝑚

𝑛
)

Note that𝑚 ·E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) = ∑

(𝑖, 𝑗) ∈𝐺
1

𝑑𝑖𝑑 𝑗
, so we obtain the following

which finalizes the proof:

𝛿 −𝑚 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) =

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ 2 ·

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
+ 𝛿

triad
−
∑︁

(𝑖,𝑗 )∈𝐺

1

𝑑𝑖𝑑 𝑗

=
∑︁

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
−

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ 𝛿

triad
,

If 𝐺 is triangle-free, then 𝛿
triad

= 0. The theorem is proved. □
4.1.3 A more general case. Next, we explore a more general case,

so we provide a bound for the expected𝑚2 by removing 𝑘 nodes

from a triangle-free graph in Theorem 4.4. When 𝑘 = 1, the theorem

is reduced to Theorem 4.1, so the bound is tight.

Theorem 4.4. (Expected𝑚2 by Removing 𝑘 Nodes) In undirected
triangle-free graph𝐺 = (𝑉 , 𝐸), where |𝑉𝐺 | = 𝑛, |𝐸𝐺 | =𝑚, subgraph
𝐺 ′ of𝐺 is obtained by removing 𝑘 nodes from𝐺 uniformly at random.
For E(𝑚2,𝐺′), the expected second moment of 𝐺 ′, we have

E(𝑚
2,𝐺′ ) ≤𝑚2,𝐺 + 2𝑘

𝑛 (𝑛 − 1) · ( 𝑛 − 1

𝑛 − 𝑘
·

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
−

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
),

where 𝑑𝑖 and 𝑑 𝑗 denote the degrees of node 𝑖 and 𝑗 , respectively.

For the detailed proof of Theorem 4.4, please refer to the supple-

mentarymaterial. We use the same triangle-free graph𝐺 in Figure 4,

and we list all the 21 subgraphs
1
by removing two nodes from𝐺 . By

Theorem 4.4,E(𝑚2,𝐺′) ≤ 13

21
+ 2×2
7×6 (

6

5
·( 1

6
+ 1

6
+ 1

4
+ 1

4
)−1) = 13

21
≈ 0.619,

while the actual E(𝑚2,𝐺′) =
∑

21

𝑖=1𝑚2,𝐺𝑖

21
≈ 0.594 < 0.619.

4.2 Third and Fourth Spectral Moments

In this part, we provide two theorems for the expected third and

fourth spectral moments of subgraphs (E(𝑚3,𝐺′) and E(𝑚4,𝐺′))
when one node is removed. Theorem 4.5 provides an upper bound

for E(𝑚3,𝐺′) indicating that whether E(𝑚3,𝐺′) is expected to in-

crease or not over that of the original graph (𝑚3) depends on the

weighted summation of
1

𝑑𝑖𝑑 𝑗𝑑𝑘
over four different types of triads.

In general, if there are more triads formed by higher degree nodes,

𝑚3,𝐺′ is expected to increase; if there are more triads with low

degree nodes (i.e., with degree 2), 𝑚3,𝐺′ is expected to decrease.

The forth moment𝑚4 is related to closed walks of length 4 (gen-

erated by edges, wedges, or squares). We provide a loose bound

1
Due to space limits, the figure is available at https://bit.ly/3zqkVVa

Table 1: Dataset Statistics

Type Network |𝑉 | = 𝑛 |𝐸 | =𝑚 Average

Degree

Clustering

Coefficient

Social

Networks

Brightkite [13] 58,228 214,078 7.353 0.1723

Flixster [24] 2,523,386 7,918,801 6.276 0.0834

Gowalla [13] 196,591 950,327 9.668 0.2367

Hyves [24] 1,402,673 2,777,419 3.960 0.0448

Livejournal [25] 3,017,286 85,654,976 56.78 0.1196

MySpace [25] 854,498 5,635,296 13.19 0.0433

Orkut [13] 3,072,441 117,185,083 76.28 0.1666

YouTube [13] 1,134,890 2,987,624 5.265 0.0808

Collaboration

Networks

Astro-Ph [13] 18,772 198,050 21.10 0.6306

Cond-Mat [13] 23,133 93,439 8.078 0.6334

Gr-Qc [13] 5,242 14,484 5.526 0.5296

Hep-Th [13] 9,877 25,973 5.259 0.4714

Road

Networks

Road-BEL [18] 1,441,295 1,549,970 2.143 0.0017

Road-CA [13] 1,965,206 2,766,607 2.816 0.0464

Road-PA [13] 1,088,092 1,541,898 2.834 0.0465

Road-TX [13] 1,379,917 1,921,660 2.785 0.0470

Biological

Networks

Bio-Dmela [18] 7,393 25,569 6.917 0.0119

Bio-Grid-Human [18] 9,527 62,364 13.09 0.1094

Bio-Grid-Yeast [18] 5,870 313,890 106.9 0.0516

Human-Brain [18] 177,600 15,669,036 176.4 0.4580

on E(𝑚4,𝐺′) in Theorem 4.6. Our experiments also show that𝑚4

has a high correlation with 𝑚2. For detailed proofs, please refer

to the supplementary material. In general, if we view triads or

squares as higher-order edges of a network, a similar analysis on

𝑚2 can be applied to𝑚3 and𝑚4, leading to increasing-decreasing,

increasing-only, and decreasing-only patterns for these moments.

Theorem 4.5 (Expected third spectral moment𝑚3 of sub-

graphs after removing one node). In undirected graph 𝐺 =

(𝑉 , 𝐸), where |𝑉𝐺 | = 𝑛, |𝐸𝐺 | = 𝑚, subgraph 𝐺 ′ of 𝐺 is obtained by
removing one node from 𝐺 uniformly at random. For E(𝑚3,𝐺′), the
expected third moment of 𝐺 ′, we have

E(𝑚
3,𝐺′ ) <𝑚3,𝐺 + 6

𝑛 (𝑛 − 1) · (2
∑︁

(𝑖,𝑗,𝑘 )∈𝐺
𝑑𝑖>2,𝑑 𝑗>2,𝑑𝑘>2

1

𝑑𝑖𝑑 𝑗𝑑𝑘
+ 1

4

∑︁
(𝑖,𝑗,𝑘 )∈𝐺

𝑑𝑖>2,𝑑 𝑗>2,𝑑𝑘=2

1

𝑑𝑖𝑑 𝑗𝑑𝑘

−
∑︁

(𝑖,𝑗,𝑘 )∈𝐺
𝑑𝑖>2,𝑑 𝑗=2,𝑑𝑘=2

1

𝑑𝑖𝑑 𝑗𝑑𝑘
− 2

∑︁
(𝑖,𝑗,𝑘 )∈𝐺

𝑑𝑖=2,𝑑 𝑗=2,𝑑𝑘=2

1

𝑑𝑖𝑑 𝑗𝑑𝑘
) .

Theorem 4.6 (Expected forth spectral moment𝑚4 of sub-

graphs after removing one node). In undirected graph 𝐺 =

(𝑉 , 𝐸), where |𝑉𝐺 | = 𝑛, |𝐸𝐺 | = 𝑚, subgraph 𝐺 ′ of 𝐺 is obtained by
removing one node from 𝐺 uniformly at random. For E(𝑚4,𝐺′), the
expected fourth moment of 𝐺 ′, we have

E(𝑚
4,𝐺′ ) ≤ 16(𝑛 − 2)

𝑛 − 1

𝑚4,𝐺 .

5 APPLICATIONS

5.1 Experimental Setup

In our experiments, we generate spectral path for each network by

varying the proportion of nodes from 0% to 100% with step size 10%,

i.e., 𝑠 = 10% in Algorithm 1; for each proportion (except for 100%

which represents the whole graph), we generate 20 independently

sampled subgraphs, i.e., 𝑡 = 20 (for which we have a discussion in

Section 8). In total, we generate 20 × 9 + 1 = 181 spectral points

for each network, and we compute the expected spectral points for

each sampling proportion. Hence, for each network, a spectral path

connects 10 expected spectral points from (100% to 10%). Code and

datasets are publicly available.
2
Next, we summarize the datasets.

2
https://github.com/shengminjin/SpectralPath
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Figure 5: Spectral Paths of Networks
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Datasets.We use 20 real-world networks from four network cat-

egories: social networks, collaboration networks, road networks,

and biological networks. The data statistics are in Table 1.

Social Networks: In total, we have eight social networks.

(1) Brightkite [13]: was a location-based social networking site

where users shared their locations by checking-in.

(2) Flixster [24]: a social movie site to buy or rent movies.

(3) Gowalla [13]: similar to Brightkite, was a location-based social

networking site where users shared their locations.

(4) Hyves [24]: the most popular social networking site in the

Netherlands with mainly Dutch visitors.

(5) Livejournal [25]: a social networking site where users can keep a
blog or journal. Here, edges represent friendships (undirected).

(6) MySpace [25]: a social network having a significant influence

on pop culture and music.

(7) Orkut [13]: was a social networking site shutdown in 2014.

(8) YouTube [13]: a video-sharing site with a social network.

Collaboration Networks: We have four collaboration networks

from arXiv.org, including scientific collaborations between authors

with different scientific interests.

(9) Astro-Ph [13]: a collaboration network in Astro physics.

(10) Cond-Mat [13]: a collaboration network in Condense matter.

(11) Gr-Qc [13]: a collaboration network in General relativity and

quantum cosmology.

(12) Hep-Th [13]: a collaboration network in High energy physics.

Road Networks: We include four road networks.

(13) Road-BEL [13]: the OpenStreetMap road network of Belgium.

(14) Road-CA [13]: the road network of California.

(15) Road-PA [13]: the road network of Pennsylvania.

(16) Road-TX [13]: the road network of Texas.

Biological Networks: We include four biological networks.

(17) Bio-Dmela [18]: a protein-protein interaction network.

(18) Bio-Grid-Human[18]: a protein-protein interaction network.

(19) Bio-Grid-Yeast[18]: a protein-protein interaction network.

(20) Human-Brain [18]: the network of human brain.

5.2 Network Visualization

As a spectral path is a path connecting several 3D spectral points

of a network and its subgraphs, we are able to plot them for visual-

ization and to capture the network properties. In Figure 5, we plot

the spectral paths of 20 real-world networks from four different

categories. We have the following observations: (1) For𝑚2 and𝑚4,

we see two common patterns: increasing-decreasing, and increasing-
only which indicates the turning point happens before 10% samples

of the graph. The observation shows that for most real-world graphs

more edges are Type III edges; (2) among the eight social networks,

Brightkite, Gowalla, and YouTube show the increasing-decreasing

pattern for both𝑚2 and𝑚4. It can be explained by their relatively

low average degree and smaller graph size, so in small samples

like 10% or 20%, most of the edges become Type I edges. Moreover,

Brightkite and Gowalla show an increasing-decreasing trend on𝑚3

while Orkut shows an increasing-only trend on𝑚3, as Orkut has a

much higher average degree so most of its triads are composed of
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high degree nodes. For the remaining networks, there is not much

change on𝑚3 as they have a low clustering coefficient so they do

not have as many triads as in those three; (3) for Collaboration

networks, only Astro-Ph shows the increasing-only trend as it has

a much higher average degree than other networks, so even 10%

of the graph still has more edges among high-degree nodes. We

observe the large change on𝑚3 for Cond-Mat, Gr-Qc and Hep-Th

as in general collaboration networks have a high clustering coef-

ficient and small samples of these sparse networks lose most triads

or only have triads with low-degree nodes; (4) for road networks,

we can see an early turning point (40%) on all𝑚2,𝑚3, and𝑚4. This

can be explained by their low average degree so most edges and

triads are among low degree nodes; (5) all biological networks show

increasing-only trend as they all have a high average degree or high

edge density. Overall, using the spectral path, one can get various

insights on the graph structure.

5.3 Network Identification

Network identification [9] aims to identify the source network from

which an anonymized graph is sampled, to find the identity of a sub-

graph. Network identification can be formulated as follows: given

a set of networks 𝑁 = {𝑁1, 𝑁2, . . . , 𝑁𝑛}, and a subgraph𝐺 sampled

from 𝑁𝑖 ∈ 𝑁 using a sampling strategy 𝑆 , we want to identify𝐺 , i.e.,

the network 𝑁𝑖 from which 𝐺 is sampled. In the problem setting,

there are a few assumptions: (1) The networks are not isomorphic,

i.e., 𝑁𝑖 and 𝑁 𝑗 are isomorphic =⇒ 𝑖 = 𝑗 , as isomorphic graphs are

basically the same graph after anonymization; and (2) Subgraph 𝐺

is not too small to lose its identity. It does not make much sense to

verify the identity of a small subgraph such as a triad, since it can

be found in most networks.

5.3.1 Experimental Setup. From each of the 20 real-world networks,

we sample many subgraphs representing graphs 𝐺 which are to be

identified. We vary the sampling proportion from 10% to 99% by

using random node sampling with step size 1%. For each proportion,

we sample two subgraphs. Hence, for each network, we have 90×2 =
180 subgraphs, and in total, 180×20 = 3, 600 samples to be identified.

5.3.2 Experiments. As the spectral path has both spectral points

of subgraphs and their relationship, we aim to explore whether one

can improve the network identification performance by using the

distances between an unidentified subgraph and the spectral path.

For each subgraph, we compute the euclidean distances from its

spectral point to the 10 expected spectral points of the spectral path,

respectively. As there are 20 networks in total, for each subgraph

we use the 10×20 = 200 distances as features and the name of the

source networks as the class label, to train a multiclass classifier.

We use 10-fold cross validation, and decision trees, SVM, 𝑘-NN, and

bagged trees as our classifiers. For evaluation, we compare to the

following four baselines: (1) Three Spectral Moments, where the

spectral point (𝑚2,𝑚3,𝑚4) of each subgraph is used as features;

(2) First Twenty Spectral Moments, where the first 20 spectral

moments of each subgraph are used as features; (3) Kronecker

Hull [9], which uses Stochastic Kronecker Graph model to embed

a network and its subgraphs and then a convex hull to represent

the distribution of the embeddings. We use the distances between

a subgraph to the convex hull of the whole network as features; (4)

Graph2Vec is a graph embedding method which views a graph as

Table 2: Network Identification Accuracy with Spectral Path

Type

Spectral

Path

Baselines

Three Spectral

Moments

First 20

Spectral Moments

Kronecker

Hull

Graph2Vec

All

Networks

96.3% 82.0% 86.5% 84.4% 81.7%

Social

Networks

100.0% 95.5% 96.1% 96.4% 83.7%

Collaboration

Networks

99.9% 94.8% 97.1% 84.2% 97.4%

Road

Networks

86.8% 51.2% 53.3% 76.8% 86.3%

Biological

Networks

100.0% 99.7% 99.6% 80.4% 89.9%

a document and the rooted subgraphs around each node as words.

It uses document embedding neural networks to embed a graph as

a vector, which we use as a feature [15].

We evaluate the methods for all networks and within each net-

work category. We report the performance for the best classifier in

Table 2, where spectral path significantly outperforms the baselines.

6 SPECTRAL PATH OF COSPECTRAL GRAPHS

Two non-isomorphic graphs are said to be cospectral with respect to

a given matrix if they share the same graph spectrum. Well-known

examples of cospectral graphs for the normalized Laplacian (as

well as the random walk transition matrix) are complete bipartite

graphs [6]. Butler et al. [2] propose constructing cospectral graphs

by swapping in a bipartite subgraph with a cospectral mate. In
general, cospectral graphs for the random walk transition matrix

are related to the bipartite (sub)graphs.

Here, we aim to show that using the expected spectral moments

(or spectral paths) of cospectral graphs may provide a potential way

to distinguish two cospectral graphs. In this paper, we use complete

bipartite graphs as an example. It is known that the spectrum of a

complete bipartite graph 𝐾𝑎,𝑏 is −1[1] , 0[𝑛−2] , 1[1] , where 𝑛 = 𝑎 +𝑏
and the exponent indicatesmultiplicity. Hence, its spectral moments

are𝑚𝑖 = 0 for an odd 𝑖 , and𝑚𝑖 =
2

𝑛 for an even 𝑖 . It is easy to see

that complete bipartite graphs of the same order are all cospectral,

i.e., one can find another complete bipartite graph 𝐾𝑎′,𝑏′ where

𝑎′ + 𝑏 ′ = 𝑎 + 𝑏. In Theorem 6.1, we prove that if one samples

a subgraph from a complete bipartite graph using random node

sampling, the expectation of its spectral moments are not only

related to 𝑛 but also related to the values of 𝑎 and 𝑏.

Theorem 6.1. Given an undirected complete bipartite graph 𝐺 =

(𝑈 ,𝑉 , 𝐸) where |𝑈 | = 𝑎, |𝑉 | = 𝑏, 𝑎 + 𝑏 = 𝑛, and 𝑎 ≤ 𝑏, 𝐺 ′ is a
subgraph of 𝐺 by removing 𝑘 nodes from 𝐺 uniformly at random.
Then, when 𝑖 is odd, E(𝑚𝑖,𝐺′) = 0, and when 𝑖 is even,

E(𝑚𝑖,𝐺′ ) =


2

𝑛−𝑘 𝑘 < 𝑎

2

𝑛−𝑘 (1 − ( 𝑏
𝑘−𝑎)
(𝑛𝑘)

) 𝑎 ≤ 𝑘 < 𝑏

2

𝑛−𝑘 (1 − ( 𝑏
𝑘−𝑎)+( 𝑎

𝑘−𝑏)
(𝑛𝑘)

) 𝑘 ≥ 𝑏

Proof. As 𝐺 ′
is a subgraph by removing 𝑘 nodes from a com-

plete bipartite graph 𝐺 , 𝐺 ′
is either a complete bipartite graph or

an empty graph. Hence,𝑚𝑖,𝐺′ is always 0 when 𝑖 is odd. When 𝑖 is

even, if 𝑘 < 𝑎,𝐺 ′
is always a complete bipartite graph of𝑛−𝑘 nodes,

so E(𝑚𝑖,𝐺′) = 2

𝑛−𝑘 ; if 𝑎 ≤ 𝑘 < 𝑏, among all

(𝑛
𝑘

)
possible subgraphs,

there are

( 𝑏
𝑘−𝑎

)
cases of 𝐺 ′

being an empty graph where all the

nodes in𝑈 are removed, and in the remaining cases, 𝐺 ′
is a com-

plete bipartite graph. Hence, E(𝑚𝑖,𝐺′) =
2

𝑛−𝑘 · ((𝑛𝑘)−( 𝑏
𝑘−𝑎))+0·( 𝑏

𝑘−𝑎)
(𝑛𝑘)

=

705



A Spectral Representation of Networks: The Path of Subgraphs KDD ’22, August 14–18, 2022, Washington, DC, USA

2

𝑛−𝑘 (1−
( 𝑏
𝑘−𝑎)
(𝑛𝑘)

); finally, if 𝑘 ≥ 𝑏, there are
( 𝑏
𝑘−𝑎

)
cases where all the

nodes in𝑈 are removed, and

( 𝑎
𝑘−𝑏

)
cases when all the nodes in 𝑉

are removed, where in both cases 𝐺 ′
becomes an empty graph so

we get E(𝑚𝑖,𝐺′) = 2

𝑛−𝑘 (1 −
( 𝑏
𝑘−𝑎)+( 𝑎

𝑘−𝑏)
(𝑛𝑘)

) . □

Using Theorem 6.1, we get the following corollary:

Corollary 6.1.1. Given two complete bipartite graphs 𝐺1 =

(𝑈1,𝑉1, 𝐸1) where |𝑈1 | = 𝑎1, |𝑉1 | = 𝑏1, and 𝐺2 = (𝑈2,𝑉2, 𝐸2) where
|𝑈2 | = 𝑎2, |𝑉2 | = 𝑏2, and 𝑎1 + 𝑏1 = 𝑎2 + 𝑏2 = 𝑛, 𝑎1 < 𝑎2 ≤ 𝑏2 < 𝑏1.
Let𝐺 ′

1
(or𝐺 ′

2
) be a subgraph of𝐺1 (or𝐺2) by removing 𝑘 nodes from

𝐺1 (or 𝐺2) uniformly at random. Then, for an even 𝑖 , we have

E(𝑚𝑖,𝐺′
1

−𝑚𝑖,𝐺′
2

) =



0 𝑘 < 𝑎1

− 2

𝑛−𝑘 ·
( 𝑏

1

𝑘−𝑎
1

)
(𝑛𝑘)

𝑎1 ≤ 𝑘 < 𝑎2

2

𝑛−𝑘 ·
( 𝑏

2

𝑘−𝑎
2

)−( 𝑏
1

𝑘−𝑎
1

)
(𝑛𝑘)

𝑎2 ≤ 𝑘 < 𝑏2

2

𝑛−𝑘 ·
( 𝑏

2

𝑘−𝑎
2

)+( 𝑎
2

𝑘−𝑏
2

)−( 𝑏
1

𝑘−𝑎
1

)
(𝑛𝑘)

𝑏2 ≤ 𝑘 < 𝑏1

2

𝑛−𝑘 ·
( 𝑏

2

𝑘−𝑎
2

)+( 𝑎
2

𝑘−𝑏
2

)−( 𝑏
1

𝑘−𝑎
1

)−( 𝑎
1

𝑘−𝑏
1

)
(𝑛𝑘)

𝑘 ≥ 𝑏1

From Corollary 6.1.1, we notice that in general E(𝑚𝑖,𝐺′
1

−𝑚𝑖,𝐺′
2

)
is nonzero as long as 𝑘 ≥ 𝑎1 (the special case is when 𝑘 = 𝑛 or

𝑛 − 1, in which E(𝑚𝑖,𝐺′
1

−𝑚𝑖,𝐺′
2

) = 0). Hence, if we remove more

than 𝑎1 nodes from two cospectral graphs (𝐺1,𝐺2) respectively, the

expected (even) spectral moments of the corresponding subgraphs

are different. Moreover, 𝑎1 < 𝑛
2
as 𝑎1 + 𝑏1 = 𝑎2 + 𝑏2 = 𝑛, 𝑎1 <

𝑎2 ≤ 𝑏2 < 𝑏1. Hence, when 𝑘 ≥ 𝑛
2
, E(𝑚𝑖,𝐺′

1

−𝑚𝑖,𝐺′
2

) can be used to

distinguish between two complete bipartite graphs. In other words,

one can use random node sampling to sample subgraphs of less

than
𝑛
2
nodes, and estimate E(𝑚𝑖,𝐺′

1

) and E(𝑚𝑖,𝐺′
2

), to distinguish

two complete bipartite graphs. The idea can be extended to general

cospectral graphs, as long as they have an explicit form of spectrum.

7 ADDITIONAL RELATED WORK

I. Subgraph Spectrum. Past studies on the spectrum of subgraphs

often focus on the Cauchy’s interlacing theorem which bounds

subgraph eigenvalues with the eigenvalues of whole graphs [3, 14].

However, interlacing theorem can only provide loose bounds on

the spectral moments, whereas our bounds are either exact or tight.

II. Spectral Embedding. Recently, spectral information is used

for different network embedding methods, such as FGSD [22] and

NetLSD [20]. Compared to them, spectral path is easy to be inter-

preted and utilizes the spectral information of subgraphs.

III. Reconstruction Conjecture. As mentioned, Bollobás has

shown that almost all graphs are reconstructible [1]. Moreover,

not all subgraphs are necessary to reconstruct them: for almost all

graphs, there exist three subgraphs that uniquely identify the graph.

Our setting matches that of the theoretical findings of Bollobás.

Specifically, by taking samples from the graph, we aim to capture

the subgraphs that can uniquely represent a graph.

8 CONCLUSION

We propose representing a network with a 3D spectral path: a path

connecting the spectral moments of a network to the expected spec-

tral moments of its subgraphs. We demonstrate the interpretability

of spectral paths. We show the utility of spectral paths in network

visualization, network identification and distinguishing cospectral

graphs. To the best of our knowledge, this is the first study to explore

spectral moments of subgraphs and study the relationship between

spectral moments of subgraphs and those of the whole network.

Limitations and Future Work. For a graph of 𝑛 nodes, there

are

(𝑛
𝑘

)
subgraphs of size 𝑘 . When 𝑘 is around

𝑛
2
, the number of

subgraphs is the largest. Hence, one may consider taking different

numbers of samples to estimate the expected moments. In our ex-

periments on real-world networks, we take 20 samples for each

sampling proportion, and the standard deviation of spectral mo-

ments is often less than 5%. In the future, we aim to study the

distribution of spectral moments of subgraphs.
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A SUPPLEMENTARY MATERIAL

A.1 Proof of Theorem 4.4

Proof. As we are removing 𝑘 nodes, there are

(𝑛
𝑘

)
possible sub-

graphs, denoted as 𝐺1,𝐺2, . . . ,𝐺(𝑛𝑘) . Each 𝐺𝑖 has 𝑛 − 𝑘 nodes. We

construct 𝐻 =
(𝑛𝑘)⋃
𝑖=1

𝐺𝑖 . For each edge (𝑖, 𝑗) in 𝐺 , there will be
(𝑛−2
𝑘

)
copies in𝐻 when neither of the ending nodes is removed. Therefore,

𝐸𝐻 (𝑑𝑖 ) =
2 · |𝐸𝐻 |
|𝑉𝐻 | =

2𝑚 ·
(𝑛−2
𝑘

)
(𝑛 − 𝑘)

(𝑛
𝑘

) =
2𝑚 (𝑛 − 𝑘 − 1)

𝑛 (𝑛 − 1) =
𝑛 − 𝑘 − 1

𝑛 − 1

· E𝐺 (𝑑𝑖 ) .

(3)

Similarly, to get 𝐸𝐻 ( 1

𝑑𝑖𝑑 𝑗
), we need to analyze the three types

of edges. (1) Type I: 𝑑𝑖 = 𝑑 𝑗 = 1. There will be no increment

for edges of Type I; (2) Type II: 𝑑𝑖 > 1, 𝑑 𝑗 = 1. If we consider

𝑥 neighbors of node 𝑖 are removed, the increment on the edge

is
1

(𝑑𝑖−𝑥)𝑑 𝑗
− 1

𝑑𝑖𝑑 𝑗
= 𝑥

(𝑑𝑖−𝑥)𝑑𝑖𝑑 𝑗
. Among the

(𝑛−2
𝑘

)
copies, there

are

(𝑑𝑖−1
𝑥

)
·
(𝑛−2−(𝑑𝑖−1)

𝑘−𝑥
)
cases where 𝑥 neighbors of 𝑖 is removed.

Moreover, 𝑥 varies from 0 to min(𝑑𝑖 −1, 𝑘), so the overall increment

of an edge of Type II is

min(𝑑𝑖−1,𝑘)∑
𝑥=0

𝑥
(𝑑𝑖−𝑥)𝑑𝑖𝑑 𝑗

(𝑑𝑖−1
𝑥

)
·
(𝑛−2−(𝑑𝑖−1)

𝑘−𝑥
)
=

1

𝑑𝑖𝑑 𝑗

min(𝑑𝑖−1,𝑘)∑
𝑥=1

(𝑑𝑖−1
𝑥−1

)
·
(𝑛−2−(𝑑𝑖−1)

𝑘−𝑥
)
≤ 1

𝑑𝑖𝑑 𝑗
·
(𝑛−2
𝑘−1

)
(as

𝑥
𝑑𝑖−𝑥

(𝑑𝑖−1
𝑥

)
=(𝑑𝑖−1

𝑥−1
)
and the bound is tight when 𝑘 ≤ (𝑑𝑖 − 1)); (3) Type III:

𝑑𝑖 > 1, 𝑑 𝑗 > 1. Assume 𝑥 neighbors of 𝑖 and 𝑦 neighbors of 𝑗 are

removed, then the increment is
1

(𝑑𝑖−𝑥) (𝑑 𝑗−𝑦) −
1

𝑑𝑖𝑑 𝑗
= 𝑥

(𝑑𝑖−𝑥)𝑑𝑖𝑑 𝑗
+

𝑦

(𝑑 𝑗−𝑦)𝑑𝑖𝑑 𝑗
+ 𝑥𝑦

(𝑑𝑖−𝑥) (𝑑 𝑗−𝑦)𝑑𝑖𝑑 𝑗
. As𝐺 is a triangle-free graph,𝐻 is also

triangle-free, and 𝑖 and 𝑗 have no common neighbors. Therefore,

among the

(𝑛−2
𝑘

)
copies, there are

(𝑑𝑖−1
𝑥

) (𝑑 𝑗−1
𝑦

) (𝑛−𝑑𝑖−𝑑 𝑗

𝑘−𝑥−𝑦
)
cases when

𝑥 neighbors of 𝑖 and 𝑦 neighbors of 𝑗 are removed. Moreover, 𝑥

varies from 0 to min(𝑑𝑖 − 1, 𝑘), 𝑦 varies from 0 to min(𝑑 𝑗 − 1, 𝑘)
and 𝑥 + 𝑦 ≤ 𝑘 , so the overall increment of an edge of Type III is

min(𝑑𝑖−1,𝑘 )∑
𝑥=0

min(𝑑 𝑗−1,𝑘−𝑥 )∑
𝑦=0

(𝑑𝑖−1
𝑥

) (𝑑 𝑗−1
𝑦

) (𝑛−𝑑𝑖−𝑑 𝑗

𝑘−𝑥−𝑦
)
( 𝑥
(𝑑𝑖−𝑥 )𝑑𝑖𝑑 𝑗

+ 𝑦

(𝑑 𝑗−𝑦)𝑑𝑖𝑑 𝑗
+

𝑥𝑦

(𝑑𝑖−𝑥 ) (𝑑 𝑗−𝑦)𝑑𝑖𝑑 𝑗
) . Note that

min(𝑑𝑖−1,𝑘 )∑︁
𝑥=0

min(𝑑 𝑗−1,𝑘−𝑥 )∑︁
𝑦=0

(
𝑑𝑖 − 1

𝑥

) (
𝑑 𝑗 − 1

𝑦

) (
𝑛 − 𝑑𝑖 − 𝑑 𝑗

𝑘 − 𝑥 − 𝑦

)
𝑥

(𝑑𝑖 − 𝑥)𝑑𝑖𝑑 𝑗

=

min(𝑑𝑖−1,𝑘 )∑︁
𝑥=0

(
𝑑𝑖 − 1

𝑥

)
𝑥

(𝑑𝑖 − 𝑥)𝑑𝑖𝑑 𝑗
·
min(𝑑 𝑗−1,𝑘−𝑥 )∑︁

𝑦=0

(
𝑑 𝑗 − 1

𝑦

) (
𝑛 − 𝑑𝑖 − 𝑑 𝑗

𝑘 − 𝑥 − 𝑦

)
=

min(𝑑𝑖−1,𝑘 )∑︁
𝑥=1

(
𝑑𝑖 − 1

𝑥 − 1

)
1

𝑑𝑖𝑑 𝑗
·
(
𝑛 − 𝑑𝑖 − 1

𝑘 − 𝑥

)
≤ 1

𝑑𝑖𝑑 𝑗
·
(
𝑛 − 2

𝑘 − 1

)
; (the bound is tight when 𝑘 ≤ (𝑑𝑖 − 1)).

Due to the symmetry, the summation over
𝑦

(𝑑 𝑗−𝑦)𝑑𝑖𝑑 𝑗
is also less

or equal to
1

𝑑𝑖𝑑 𝑗
·
(𝑛−2
𝑘−1

)
. For the summation over

𝑥𝑦

(𝑑𝑖−𝑥) (𝑑 𝑗−𝑦)𝑑𝑖𝑑 𝑗
:

min(𝑑𝑖−1,𝑘 )∑︁
𝑥=0

min(𝑑𝑗 −1,𝑘−𝑥 )∑︁
𝑦=0

(
𝑑𝑖 − 1

𝑥

) (
𝑑 𝑗 − 1

𝑦

) (
𝑛 − 𝑑𝑖 − 𝑑 𝑗

𝑘 − 𝑥 − 𝑦

)
𝑥𝑦

(𝑑𝑖 − 𝑥) (𝑑 𝑗 − 𝑦)𝑑𝑖𝑑 𝑗

=

min(𝑑𝑖−1,𝑘 )∑︁
𝑥=1

min(𝑑𝑗 −1,𝑘−𝑥 )∑︁
𝑦=1

(
𝑑𝑖 − 1

𝑥 − 1

) (
𝑑 𝑗 − 1

𝑦 − 1

) (
𝑛 − 𝑑𝑖 − 𝑑 𝑗

𝑘 − 𝑥 − 𝑦

)
1

𝑑𝑖𝑑 𝑗

≤ 1

𝑑𝑖𝑑 𝑗

·
(
𝑛 − 2

𝑘 − 2

)

The increment of an edge of Type III is ≤ 1

𝑑𝑖𝑑 𝑗
· (2

(𝑛−2
𝑘−1

)
+
(𝑛−2
𝑘−2

)
),

so the total increment over all the edges is less or equal to 𝛿 =
(𝑛−2
𝑘−1

)
·∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ (2

(𝑛−2
𝑘−1

)
+
(𝑛−2
𝑘−2

)
) · ∑

(𝑖, 𝑗) ∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
, and we normalize

it by |𝐸𝐻 |:

𝛿

|𝐸𝐻 | =

(𝑛−2
𝑘−1

)
· ∑

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ (2

(𝑛−2
𝑘−1

)
+
(𝑛−2
𝑘−2

)
) · ∑

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗(𝑛−2
𝑘

)
𝑚

=
𝑘

(𝑛 − 𝑘 − 1)𝑚 ·
∑︁

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗

+ ( 2𝑘

(𝑛 − 𝑘 − 1)𝑚 + 𝑘 (𝑘 − 1)
(𝑛 − 𝑘) (𝑛 − 𝑘 − 1)𝑚 ) ·

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗

=
𝑘

(𝑛 − 𝑘 − 1)𝑚 · (
∑︁

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ (2 + 𝑘 − 1

𝑛 − 𝑘
)

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
)

For simplicity, we denote 𝛿′ =
∑

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ (2+ 𝑘−1

𝑛−𝑘 ) ·
∑

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
,

and we get:

E𝐻 ( 1

𝑑𝑖𝑑 𝑗
) ≤ E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝑘

(𝑛 − 𝑘 − 1)𝑚𝛿
′

(4)

Next, we compute𝑚2,𝐻 using Equations 3 and 4:

𝑚2,𝐻 = E𝐻 (𝑑𝑖 ) E𝐻 ( 1

𝑑𝑖𝑑 𝑗
)

≤ 𝑛 − 𝑘 − 1

𝑛 − 1

E𝐺 (𝑑𝑖 ) · (E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝑘

(𝑛 − 𝑘 − 1)𝑚𝛿′)

=
𝑛 − 𝑘 − 1

𝑛 − 1

E𝐺 (𝑑𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝑘𝛿′ · E𝐺 (𝑑𝑖 )

(𝑛 − 1)𝑚

= E𝐺 (𝑑𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) + 𝑘𝛿′ · E𝐺 (𝑑𝑖 )

(𝑛 − 1)𝑚 −
𝑘 E𝐺 (𝑑𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗
)

𝑛 − 1

=𝑚2,𝐺 + 𝑘 E𝐺 (𝑑𝑖 )
(𝑛 − 1)𝑚 · (𝛿′ −𝑚 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗
))

=𝑚2,𝐺 + 2𝑘

𝑛 (𝑛 − 1) · (𝛿′ −𝑚 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗
)) (as E𝐺 (𝑑𝑖 ) =

2𝑚

𝑛
)

Note that𝑚 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) = ∑

(𝑖, 𝑗) ∈𝐺
1

𝑑𝑖𝑑 𝑗
, so

𝛿′ −𝑚 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗
) =

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖>1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
+ (2 + 𝑘 − 1

𝑛 − 𝑘
) ·
∑︁

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
−
∑︁

(𝑖,𝑗 )∈𝐺

1

𝑑𝑖𝑑 𝑗

=
𝑛 − 1

𝑛 − 𝑘
·
∑︁

(𝑖,𝑗 )∈𝐺
𝑑𝑖>1,𝑑 𝑗>1

1

𝑑𝑖𝑑 𝑗
−

∑︁
(𝑖,𝑗 )∈𝐺

𝑑𝑖=1,𝑑 𝑗=1

1

𝑑𝑖𝑑 𝑗
,

which finalizes the proof. □

A.2 Proof of Theorem 4.5

Proof. The idea of the proof is similar to that of Theorem 4.1.

There are 𝑛 subgraphs 𝐺1,𝐺2, . . . ,𝐺𝑛 . We construct 𝐻 =
⋃𝑛

𝑖=1𝐺𝑖 ,

so𝑚3,𝐻 =

∑
𝑖 𝑚3,𝐺𝑖

𝑛 = E(𝑚3,𝐺′). From Theorem 4.2,𝑚3 = E(𝜆3) =
2E(Δ𝑖 ) E( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
). In the formula, E(Δ𝑖 ) is the average number of

triads a node is in, and by definition E(Δ𝑖 ) = 3Δ
𝑛 , where Δ is the
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number of triads of a graph. E( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
) is the expected value of

1

𝑑𝑖𝑑 𝑗𝑑𝑘
over all triads. Hence, 𝑚3,𝐻 = 2E𝐻 (Δ𝑖 ) E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
). For

any triad (𝑖, 𝑗, 𝑘) in 𝐺 , it has 𝑛 − 3 copies in which no member of

𝑖, 𝑗, 𝑘 is removed, so E𝐻 (Δ𝑖 ) = 3Δ𝐻

|𝑉𝐻 | =
3(𝑛−3)Δ𝐺

𝑛 (𝑛−1) = 𝑛−3
𝑛−1 E𝐺 (Δ𝑖 ).

To get E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
), we consider four types of triads based on

their node degrees.

▶Type I:𝑑𝑖 = 2, 𝑑 𝑗 = 2, 𝑑𝑘 = 2. For such a triad, all of its𝑛−3 copies
have

1

𝑑𝑖𝑑 𝑗𝑑𝑘
= 1

8
as neither of 𝑖 and 𝑗 can lose other neighbors, so

there will be no increment;

▶ Type II: 𝑑𝑖 > 2, 𝑑 𝑗 = 2, 𝑑𝑘 = 2. For a triad of this type, if the

removed node is a neighbor of 𝑖 , then the triad contributes an

increment
1

(𝑑𝑖−1)𝑑 𝑗𝑑𝑘
− 1

𝑑𝑖𝑑 𝑗𝑑𝑘
= 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) . Among the 𝑛 − 3

copies, there are 𝑑𝑖 − 2 such cases, so the overall contribution is

(𝑑𝑖 − 2) · 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) = 1

𝑑𝑖𝑑 𝑗𝑑𝑘
· 𝑑𝑖−2
𝑑𝑖−1 < 1

𝑑𝑖𝑑 𝑗𝑑𝑘
.

▶Type III:𝑑𝑖 > 2, 𝑑 𝑗 > 2, 𝑑𝑘 = 2. If the removed node is a neighbor

of 𝑖 but not connected to 𝑗 (or a neighbor of 𝑗 but not connected to 𝑖)

and not including 𝑘 , the triad contributes an increment
1

(𝑑𝑖−1)𝑑 𝑗𝑑𝑘
−

1

𝑑𝑖𝑑 𝑗𝑑𝑘
= 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) (or
1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑 𝑗−1) ). If the removed node is a

common neighbor of 𝑖 and 𝑗 , the increment is
1

(𝑑𝑖−1) (𝑑 𝑗−1)𝑑𝑘 −
1

𝑑𝑖𝑑 𝑗𝑑𝑘
= 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) +
1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑 𝑗−1) +
1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) (𝑑 𝑗−1) . Assume

𝑖 and 𝑗 have 𝑐𝑖 𝑗 common neighbors not including 𝑘 , then the overall

increment of a triad of Type III is (𝑑𝑖 − 2 − 𝑐𝑖 𝑗 ) · 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) +
(𝑑 𝑗 − 2 − 𝑐𝑖 𝑗 ) · 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑 𝑗−1) + 𝑐𝑖 𝑗 · ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) + 1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑 𝑗−1) +
1

𝑑𝑖𝑑 𝑗𝑑𝑘 (𝑑𝑖−1) (𝑑 𝑗−1) ) =
1

𝑑𝑖𝑑 𝑗𝑑𝑘
( 𝑑𝑖−2
𝑑𝑖−1 +

𝑑 𝑗−2
𝑑 𝑗−1 +

𝑐𝑖 𝑗
(𝑑𝑖−1) (𝑑 𝑗−1) ). Note that

𝑐 varies from 0 to min(𝑑𝑖 , 𝑑 𝑗 ) − 2, so the overall increment is less

than
9

4
· 1

𝑑𝑖𝑑 𝑗𝑑𝑘
.

▶Type IV:𝑑𝑖 > 2, 𝑑 𝑗 > 2, 𝑑𝑘 > 2. If the removed node is a neighbor

of 𝑖 but not connected to 𝑗 or 𝑘 , the increment is
1

𝑑𝑖𝑑 𝑗𝑑𝑘
· 1

𝑑𝑖−1 ; if the

removed node is a common neighbor of 𝑖 and 𝑗 but not connected to

𝑘 , then the increment is
1

𝑑𝑖𝑑 𝑗𝑑𝑘
· ( 1

𝑑𝑖−1 +
1

𝑑 𝑗−1 +
1

(𝑑𝑖−1) (𝑑 𝑗−1) ); if the
removed node is a common neighbor of 𝑖 , 𝑗 and 𝑘 , the increment

is
1

(𝑑𝑖−1) (𝑑 𝑗−1) (𝑑𝑘−1) − 1

𝑑𝑖𝑑 𝑗𝑑𝑘
= 1

𝑑𝑖𝑑 𝑗𝑑𝑘
· ( 1

𝑑𝑖−1 + 1

𝑑 𝑗−1 + 1

𝑑𝑘−1 +
1

(𝑑𝑖−1) (𝑑 𝑗−1) + 1

(𝑑𝑖−1) (𝑑𝑘−1) + 1

(𝑑 𝑗−1) (𝑑𝑘−1) + 1

(𝑑𝑖−1) (𝑑 𝑗−1) (𝑑𝑘−1) ).
Similarly, we can get the overall increment for a triad of Type

IV:
1

𝑑𝑖𝑑 𝑗𝑑𝑘
· ( 𝑑𝑖−2

𝑑𝑖−1 + 𝑑 𝑗−2
𝑑 𝑗−1 + 𝑑𝑘−2

𝑑𝑘−1 + 𝑐𝑖 𝑗
(𝑑𝑖−1) (𝑑 𝑗−1) + 𝑐𝑖𝑘

(𝑑𝑖−1) (𝑑𝑘−1) +
𝑐 𝑗𝑘

(𝑑 𝑗−1) (𝑑𝑘−1) + 𝑐𝑖 𝑗𝑘
(𝑑𝑖−1) (𝑑 𝑗−1) (𝑑𝑘−1) ), where 𝑐𝑖 𝑗 (or 𝑐𝑖𝑘 , 𝑐 𝑗𝑘 ) is the

number of common neighbors of 𝑖 and 𝑗 (or 𝑖 and 𝑘 , 𝑗 and 𝑘), not

including 𝑖 , 𝑗 , 𝑘 ; and 𝑐𝑖 𝑗𝑘 is the number of common neighbors of 𝑖 ,

𝑗 and 𝑘 . The increment is less than 4 · 1

𝑑𝑖𝑑 𝑗𝑑𝑘
.

Therefore, the total increment over all the triad is less than

𝛿 =
∑

Type II

1

𝑑𝑖𝑑 𝑗𝑑𝑘
+ 9

4

∑
Type III

1

𝑑𝑖𝑑 𝑗𝑑𝑘
+ 4

∑
Type IV

1

𝑑𝑖𝑑 𝑗𝑑𝑘
and after nor-

malizing it by |Δ𝐻 | we get: E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
) < E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
) + 𝛿

(𝑛−3)Δ𝐺
.

Next, we compute𝑚3,𝐻 :

𝑚3,𝐻 = 2E𝐻 (Δ𝑖 ) E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
)

< 2

𝑛 − 3

𝑛 − 1

E𝐺 (Δ𝑖 ) (E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
) + 𝛿

(𝑛 − 3)Δ𝐺

)

= 2( 𝑛 − 3

𝑛 − 1

E𝐺 (Δ𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
) + E𝐺 (Δ𝑖 )𝛿

(𝑛 − 1)Δ𝐺

)

= 2(E𝐺 (Δ𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
) + E𝐺 (Δ𝑖 )𝛿

(𝑛 − 1)Δ𝐺

− 2

𝑛 − 1

E𝐺 (Δ𝑖 ) E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
))

=𝑚3,𝐺 + 2E𝐺 (Δ𝑖 )
(𝑛 − 1)Δ𝐺

(𝛿 − 2Δ𝐺 E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
))

=𝑚3,𝐺 + 6

𝑛 (𝑛 − 1) (𝛿 − 2Δ𝐺 E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
)) (as 𝐸𝐺 (Δ𝑖 ) =

3Δ𝐺

𝑛
).

Notice thatΔ𝐺 E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
) = ∑
(𝑖, 𝑗,𝑘) ∈𝐺

1

𝑑𝑖𝑑 𝑗𝑑𝑘
, so𝛿−2Δ𝐺 E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘
)

= 1

4

∑
Type III

1

𝑑𝑖𝑑 𝑗𝑑𝑘
+ 2

∑
Type IV

1

𝑑𝑖𝑑 𝑗𝑑𝑘
− ∑

Type II

1

𝑑𝑖𝑑 𝑗𝑑𝑘
− 2

∑
Type I

1

𝑑𝑖𝑑 𝑗𝑑𝑘
.

The theorem is proved. □

A.3 Proof of Theorem 4.6

Proof. Similarly, there are 𝑛 subgraphs 𝐺1,𝐺2, . . . ,𝐺𝑛 . We con-

struct 𝐻 =
⋃𝑛

𝑖=1𝐺𝑖 , so 𝑚4,𝐻 =

∑
𝑖 𝑚4,𝐺𝑖

𝑛 = E(𝑚4,𝐺′). From The-

orem 4.2, 𝑚4 = [ E(𝑑𝑖 ) + 4E
(𝑑𝑖
2

)
+ 2E(□𝑖 ) ] E( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
). In the

formula, E(𝑑𝑖 ) is the average degree; E
(𝑑𝑖
2

)
is the average number

of wedges a node is in, so it equals to
𝑤
𝑛 where 𝑤 is the num-

ber of wedges; E(□𝑖 ) is the average number of squares a node

is in. E( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
) is the expected value of

1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
over all the

closed walks of length 4. Hence, for graph 𝐻 , we have 𝑚4,𝐻 =

[ E𝐻 (𝑑𝑖 ) + 4E𝐻
(𝑑𝑖
2

)
+ 2E𝐻 (□𝑖 ) ] E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
).

From Equation 1, we have E𝐻 (𝑑𝑖 ) = 𝑛−2
𝑛−1 · E𝐺 (𝑑𝑖 ); As each

wedge in 𝐺 has 𝑛 − 3 copies in 𝐻 (when none of the three nodes is

removed), E𝐻
(𝑑𝑖
2

)
=

𝑤𝐻

𝑛 (𝑛−1) =
(𝑛−3)𝑤𝐺

𝑛 (𝑛−1) = 𝑛−3
𝑛−1 · E𝐺

(𝑑𝑖
2

)
; Similarly,

E𝐻 (□𝑖 ) = 𝑛−4
𝑛−1 · E𝐺 (□𝑖 ) as each square in 𝐺 has 𝑛 − 4 copies in 𝐻 .

To get E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
), of course we can discuss all the possible

closed walks of length 4 (generated by edges, wedges or squares),

as we have done in the previous theorems. However, for a simpler

exposition, we provide the following upper bound. Notice that

E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
) ≤ E𝐺 ( 1

(𝑑𝑖−1) (𝑑 𝑗−1) (𝑑𝑘−1) (𝑑𝑙−1) ) and the bound is

tight when 𝐺 is a complete graph (𝑛 ≥ 3) or all of its components

are 𝑘-cliques (𝑘 ≥ 3), and
1

(𝑑𝑖−1) (𝑑 𝑗−1) (𝑑𝑘−1) (𝑑𝑙−1) = 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
·∏

𝑥 ∈{𝑖, 𝑗,𝑘,𝑙 }
𝑑𝑥

𝑑𝑥−1 ≤ 16

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
, so E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
) ≤ 16 ·E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
).

Therefore,

𝑚4,𝐻 = [ E𝐻 (𝑑𝑖 ) + 4E𝐻

(
𝑑𝑖

2

)
+ 2E𝐻 (□𝑖 ) ] E𝐻 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
)

≤ [ 𝑛 − 2

𝑛 − 1

E𝐺 (𝑑𝑖 ) + 4

𝑛 − 3

𝑛 − 1

E𝐺

(
𝑑𝑖

2

)
+ 2

𝑛 − 4

𝑛 − 1

E𝐺 (□𝑖 ) ]

× 16 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
)

≤ 𝑛 − 2

𝑛 − 1

[ E𝐺 (𝑑𝑖 ) + 4E𝐺

(
𝑑𝑖

2

)
+ 2E𝐺 (□𝑖 ) ] × 16 · E𝐺 ( 1

𝑑𝑖𝑑 𝑗𝑑𝑘𝑑𝑙
)

=
16(𝑛 − 2)
𝑛 − 1

𝑚4,𝐺

□
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