
SEMI-SUPERVISED GRAPH ULTRA-SPARSIFIER
USING REWEIGHTED ℓ1 OPTIMIZATION

Jiayu Li1 Tianyun Zhang2∗ Shengmin Jin3† Reza Zafarani1∗

1 Data Lab, Syracuse University 2 Cleveland State University 3 Amazon USA

ABSTRACT

Graph representation learning with the family of graph con-
volution networks (GCN) provides powerful tools for predic-
tion on graphs. As graphs grow with more edges, the GCN
family suffers from sub-optimal generalization performance
due to task-irrelevant connections. Recent studies solve this
problem by using graph sparsification in neural networks.
However, graph sparsification cannot generate ultra-sparse
graphs while simultaneously maintaining the performance
of the GCN family. To address this problem, we propose
Graph Ultra-sparsifier, a semi-supervised graph sparsifier
with dynamically-updated regularization terms based on the
graph convolution. The graph ultra-sparsifier can generate
ultra-sparse graphs while maintaining the performance of the
GCN family with the ultra-sparse graphs as inputs. In the
experiments, when compared to the state-of-the-art graph
sparsifiers, our graph ultra-sparsifier generates ultra-sparse
graphs and these ultra-sparse graphs can be used as inputs to
maintain the performance of GCN and its variants in node
classification tasks.

Index Terms— Graph sparsifier, graph neural network,
reweighted optimization

1. INTRODUCTION

Inspired by the major success of neural networks in computer
vision, graph neural networks (GNNs) [1] have been proposed
for addressing various graph-based problems. There are two
main types of GNNs: spectral-based methods and spatial-
based methods. A well-established example from the spectral
methods is the Graph Convolutional Network (GCN) [2], a
semi-supervised model that takes the whole adjacency matrix
as input in each neural network layer. Similarly, SGC [3] and
SSGC [4], the variants of GCN, reduce the excess complexity
of GCN by repeatedly removing the nonlinearities between
layers and collapsing the resulting layers (i.e., functions) into
a single linear transformation. However, task-irrelevant edges
in graphs lead to the GCN family suffering from sub-optimal
generalization performance [5].

∗Corresponding authors
†The work was done prior to the author joining Amazon

Graph sparsification [6, 7] can solve the problem of task-
irrelevant edges. The aim of graph sparsification is to find a
sparse subgraph Gs from a graph G such that the sparsified
subgraph Gs can serve as an approximation of the graph G
in numerical computations for graph-based applications. For
example, cut sparsifiers [8] ensure that the total weight of cuts
in a sparsified graph approximates that of cuts in the original
graph within some bounded distance. Spectral sparsifiers [9]
can guarantee that a sparsified graph preserves the spectral
properties of a graph Laplacian. Recent studies [10, 11, 12,
13] have shown that by integrating neural networks with dif-
ferent graph sparsifiers, one can improve node classification
performance. However, to guarantee performance in GCN
family, these studies only yield graphs with limited sparsity.

To address this problem, we propose Graph Ultra-
Sparsifier (GU), which generates ultra-sparsified graphs, and
the ultra-sparse graphs can be used as inputs in the GCN fam-
ily without loss of accuracy (and at times, even improving)
in the node classification task. GU achieves its performance
by considering both (1) graph sparsification and (2) main-
taining the graph filter. First, graph sparsification should
reduce the ℓ0 norm of the adjacency matrix. However, ℓ0
norm is non-convex and discrete. To solve this issue, we
approximate the solution to the ℓ0 problem by solving the
reweighted ℓ1 problem [14, 15]. Second, we minimize the
effect of graph sparsification on the graph filter in the graph
convolutional network. Graph convolution on a graph G can
be represented by (X∗ f)G = U((UT f)⊙ (UT X)) = Uf̂UT X,
where f̂ = UT f. For graph signal X, we have X = UC, where
U = (u1, . . . , uN) is the basis signal and C = (c1, . . . , cN)
is the coefficients for U. Therefore, given a graph G with
an adjacency matrix A, we have the graph convolution
(X ∗ f)G = Uf̂C. In the GCN family, f̂ = Λ, where
Λ = diag(λi) is the eigenvalue matrix of the graph fil-

ter D̃
− 1

2 ÃD̃
− 1

2 , Ã = A + I and D̃ is the degree matrix

from Ã. We have D̃
− 1

2 ÃD̃
− 1

2 = I − L̃, where L̃ is a
Laplacian matrix with eigenvalues ∆ = diag(δi). Hence,
(X ∗ f)G = U(I − ∆)C =

∑
i(1 − δi)ciui. In the process

of generating a sparse graph, the graph sparsifier updates
the eigenvalues δi to the eigenvalues δ′i; hence, the filter
function of the sparse graph will be affected, leading to per-
formance drop in GCN family. Hence, the proposed graphIC

A
SS

P
20

23
 -

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

co
us

tic
s,

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g

(I
C

A
SS

P)
 |

97
8-

1-
72

81
-6

32
7-

7/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

A
SS

P4
93

57
.2

02
3.

10
09

66
60

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on May 22,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

ultra-sparsifier aims to guarantee
√∑

i(δ
′
i − δi)2 ≤ ∥E∥F ,

where E is a Hermitian matrix. We prove that the Hermitian
matrix exists and that we can minimize ∥E∥F to maintain the
filter function in the graph sparsification process.

To evaluate GU on multiple real-world graphs, we com-
pare its performance with the state-of-the-art graph sparsi-
fiers, such as Spectral Sparsifier [16], SGCN [12], and DropE-
dge [11]. We demonstrate that GU can generate ultra-sparse
graphs while the GCN family can maintain the node classifi-
cation performance when using these ultra-sparsified graphs
from GU. In sum, our contributions can be summarized as:

• We propose Graph Ultra-Sparsifier (GU), a semi-
supervised graph sparsifier that can be integrated with
the GCN family;

• We prove that there exists a Hermitian matrix E, which
can be minimized to maintain the performance of the
graph filter in the graph sparsification process; and

• We show that GU yields ultra-sparse graphs, and the
performance of the GCN family is maintained (or im-
proved) when using such graphs.

2. A SEMI-SUPERVISED GRAPH SPARSIFIER

2.1. Problem Definition

Given an undirected graph G = (V,K) with adjacency matrix
A, nodes V = {v1, . . . , vn} and edges K = {k1, . . . , km}, let
n = |V| denote the number of nodes and m = |K| denote
the number of edges. Graph ultra-sparsifier aims to reduce
the number of edges m of the original graph G to m′ in a
subgraph Gs (m′ < m), such that subgraph Gs, when used as
input to the GCN family, results in classification performance
similar to that of the original graph G in GCNs.

2.2. Graph Sparsification

2.2.1. Problem Formulation

The output of the GCN family is a function of A and the
weight matrix W. For semi-supervised multi-class classifi-
cation, loss function of the GCN family with N layers related
to A is the cross-entropy error over labeled examples:

f({Ai}Ni=1, {Wi}Ni=1) = −
∑
l∈YL

∑
f

Ylf ln(Zlf), (1)

where YL is the set of node indices that have labels, Ylf is
a matrix of labels, and Zlf is the output of the GCN family.
When fixing the weight matrices in the GCN family, the ultra-
sparsifier aims to train the adjacency matrix and reduce the
number of non-zero elements in the adjacency matrix while
maintaining the accuracy of the GCN family. Therefore, with
pretrained models of the GCN family, we use f({A}Ni=1) to

present the loss function (Eq. 1) and aim to minimize the sum-
mation of the loss function with the ℓ0 regularization term:

minimize
{Ai}

f({Ai}Ni=1) + λ

N∑
i=1

∥Ai∥0
, (2)

where λ is the penalty parameter to adjust the relative impor-
tance of accuracy with respect to sparsity.

2.2.2. Problem Solution

The problem in Eq. (2) with the ℓ0 norm is intractable. There-
fore, we use a reweighted ℓ1 method [14] to approximate the
ℓ0 norm. With the reweighted ℓ1 method, we instead solve the
following problem:

minimize
{Ai}

f({Ai}Ni=1) + λ

N∑
i=1

h(H(l)
i ,Ai), (3)

where l represents the number of iterations of the reweighted
method and h(H(l)

i ,Ai) = ∥H(l)
i ⊙ Ai∥ℓ1 , where the opera-

tor ⊙ denotes the Hadamard product. H(l)
i is the collection

of penalties on an adjacency matrix of one layer in the GCN
family, which is updated in every iteration to increase the de-
gree of sparsity beyond the ℓ1 norm regularization. In each
iteration, we update the solution of Ai by A(l)

i using gradient
descent and update H(l+1)

i with the following equation.:

H(l+1)
i =

1

|A(l)
i + ϵ|

, (4)

where | · | denotes the absolute value, and ϵ is a small param-
eter to avoid dividing by zero. All operations in Eq. (4) are
element-wise.

2.3. Maintaining the Graph Filter

For maintaining the graph filter, given a Laplacian matrix L̃
from a graph G with eigenvalues δi, and a Laplacian matrix L̂
with eigenvalues δ′i after updating the graph G, we first prove
that the difference between δi’s and δ′i’s can be bounded by
∥E∥F = ∥L̃−L̂∥F . Then, we prove that the Laplacian matrix
L̂ exists; hence, we can minimize the upper bound ∥E∥F to
maintain the graph filter in the graph sparsification process.

Theorem 1. There exists a Hermitian matrix E = L̂− L̃ such
that the eigenvalues δi and the updated eigenvalues δ′i satisfy√∑

i(δ
′
i − δi)2 ≤ ∥E∥F .

Proof. In the GCN family, (X ∗ f)G = D̃
− 1

2 ÃD̃
− 1

2 X =

UΛUT UC. We can define D̃
− 1

2 ÃD̃
− 1

2 as gλ, which is called
graph filter in [17]. After sparsifying a graph, the filter is

updated to gλ′ = D̂
− 1

2 ÂD̂
− 1

2 . The difference between two

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on May 22,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

filters can be written as

gλ − gλ′ =UΛUT − UΛ′UT

=U(I −∆)UT − U(I −∆′)UT

=U∆′UT − U∆UT

=L̂ − L̃,

(5)

where L̂ and L̃ are Laplacian matrices with eigenvalues ∆′ =
diag(δ′i) and ∆ = diag(δi), respectively. Based on the Her-
mitian analogue of Hoffman-Wielandt theorem [18], given
E = gλ−gλ′ = L̂−L̃, we can have

√∑
i(δ

′
i − δi)2 ≤ ∥E∥F ,

where E is also a Hermitian matrix.

Next, we prove that given a trainable Hermitian matrix α,
there exists an updated Laplacian matrix L̂ related to a graph
G with Laplacian matrix L̃.

Theorem 2. There exists a Hermitian matrix α such that we
can have the updated Laplacian matrix L̂ = (I + α)L̃ + αD̃,
satisfying

√∑
i(δ

′
i − δi)2 ≤ ∥E∥F = ∥α(L̃ + D̃)∥F

Proof. Rayleigh quotient for a given complex Hermitian ma-
trix M and nonzero vector x is defined as R(M, x) = xT Mx

xT x .
The Laplacian matrix and the degree matrix can be noted as
L̃ = U∆UT and D̃ (degrees are in range [dmin, dmax]) are
also Hermitian matrices. Let M = L̃ + D̃, then

R(M, x) =
xT (L̃ + D̃)x

xT x

=
(UT x)T∆(UT x) + xT D̃x

xT x

=
PT∆P + xT Dx

xT x

=

∑
i δi|pi|2 +

∑
i di|xi|2∑

i |xi|2

(6)

According to (6), we have

δ1
∑

i |pi|2 + dmin

∑
i |xi|2∑

i |xi|2
≤ R(M, x) (7)

and

R(M, x) ≤
δn

∑
i |pi|2 + dmax

∑
i |xi|2∑

i |xi|2
. (8)

As UT U = I and Iij =
∑

i ujiuik, j ̸= k when
Ijk = 0 and j = k when Ijk = 1. With

∑
i |pi|2 =∑

j

∑
k(
∑

i ukiuij)xjxk. Therefore, we can have∑
i

|pi|2 =
∑
i

|xi|2. (9)

Combining (7) and (8) with (9), we have δ1 + dmin ≤
R(L̃ + D̃) ≤ δn + dmax, which means the eigenvalues µ of
L̃+ D̃ range from δ1+dmin to δn+dmax. In the GCN family,

Table 1. Dataset statistics
Dataset Type Number of Nodes Number of Edges

Cora Citation network 2,708 5,429
Citeseer Citation network 3,327 4,732
Pubmed Citation network 19,717 44,338
NELL Knowledge graph 65,755 266,144

the range of eigenvalues of L̃ is [0, 2) while dmin is equal to
1 with adding a self-loop to each node. Therefore, we have
1 ≤ µ < 2 + dmax and det(L̃ + D̃) =

∏
i µi > 0, which

means the Hermitian matrix L̃+ D̃ can be invertible. Let E =
α(L̃ + D̃), we can obtain α = E(L̃ + D̃)−1 and the updated
Laplacian matrix L̂ can be represented as L̂ = (I+α)L̃+αD̃
according to Theorem 1.

Matrices L̃ and L̂ are related to Ã and the sparsified Ã,
respectively. Thus, from Theorems 1 and 2, we can add ∥L̂−
L̃∥F in the Eq.(3), which is equal to finding an optimal α to
minimize the upper bound ∥E∥F for maintaining the filters.

3. EXPERIMENTS

We evaluate the performance of our graph ultra-sparsifier by
(a) comparing the sparsity of the sparsified graphs provided
by different graph sparsifiers; and (b) the node classification
performance of the GCN family with the sparsified graphs.

3.1. Experimental Setup

Datasets. We conduct our experiments on four classical
graph datasets, which have been utilized for evaluation in
previous studies. Citeseer, Cora, and Pubmed are from
[19] while NELL is extracted from a knowledge graph intro-
duced by [20]. Table 1 provides the statistics of the datasets.

Baselines. We evaluate our results using node classification
“backbone” models from the GCN family including GCN [2],
SGC [3] and SSGC [4]. We thoroughly evaluate the perfor-
mance of different graph sparsifiers on the GCN family using
the state-of-the-art sparsifiers: Spectral Sparsifier (SS) [16],
SGCN [12], and DropEdge [11]. The SS sparsifies graphs in
near linear-time. SGCN sparsifies the graph in GCN by for-
mulating and solving it by ADMM [21]. DropEdge randomly
removes a certain number of edges from an input graph at
each training epoch.1

3.2. Results and Performance Analysis

In Table 2, we identify the sparsest graphs (i.e., the maxi-
mum sparsity) that can be achieved by the GU such that when
those sparse graphs are integrated with a backbone (the GCN
family), we can achieve a similar performance to that of the
backbone without any sparsifier. We use the same sparsity in

1The code and appendix have been released on https://github.
com/Code4Graph/Ultra-sparsifier.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on May 22,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

Table 2. Performance of node classification of the GCN family using sparsified graphs from graph sparsifiers.

Backbone Sparsifier Cora Citeseer Pubmed NELL
Accuracy Sparsity Accuracy Sparsity Accuracy Sparsity Accuracy Sparsity

None 81.5% 0% 70.5% 0% 78.7% 0% 67.7% 0%
GCN SGCN 80.5% 15% 69.3% 28% 77.2% 20% 63.8% 20%

DropEdge 80.6% 15% 68.6% 28% 76.8% 20% 63.0% 20%
GU (ours) 81.7% 15% 70.7% 28% 78.7% 20% 67.7% 20%

None 82.4% 0% 73.0% 0% 80.0% 0% 68.1% 0%
SSGC SGCN 80.8% 15% 71.6% 20% 78.8% 20% 65.4% 20%

DropEdge 81.6% 15% 69.6% 20% 77.6% 20% 66.1% 20%
GU (ours) 82.6% 15% 73.1% 20% 80.0% 20% 68.1% 20%

None 80.7% 0% 71.9% 0% 77.7% 0% 67.9% 0%
SGC SGCN 79.2% 15% 71.8% 25% 76.4% 20% 63.8% 20%

DropEdge 78.7% 15% 71.9% 25% 77.2% 20% 54.3% 20%
GU (ours) 80.8% 15% 72.1% 25% 77.7% 20% 67.9% 20%

other sparsifiers with the GCN family and observe their per-
formance in node classification. Note that we denote back-
bone without any sparsifier as None in the sparsifier column
of Table 2 (i.e., sparsity is equal to 0). On Cora dataset,
the max sparsity of the graph in GU is up to 15%, and the
GCN family using the sparse graphs from GU have the best
performance (81.7%, 82.6% and 80.8% accuracy rates). We
observe that the GCN family using sparse graphs from other
sparsifiers with the same sparsity cannot achieve this perfor-
mance. When integrated with backbone GCN, SSGC and
SGC on Citeseer dataset, the GU achieves a max spar-
sity of up to 28%, 20% and 25%, respectively and helps the
backbones outperform other models in the node classification
task. On Pubmed and NELL datasets, even though removing
20% of the edges, GU integrated with the GCN family still
achieve the same performance as the GCN family using origi-
nal graphs while other sparsifiers using the same sparsity with
the backbones have worse performance. As in SS sparsifier,
we cannot set as input a fix sparsity, for fair comparison, we
compare the performance of the GCN family using the sparse
graphs from GU and SS with the same sparsity decided by SS.
The results in Figures 1(a), 1(b), 1(c) and 1(d) show that the
GCN family using sparse graphs from GU have better perfor-
mance than these backbones using sparsified graphs from SS.

4. CONCLUSION

Graph sparsification removes task-irrelevant connections in
graphs and prevents the GCN family from falling into sub-
optimal generalization performance. In this paper, we pro-
pose Graph Ultra-sparsifier (GU), a semi-supervised graph
sparsifier that can generate ultra-sparse graphs and can be in-
tegrated with the GCN family. In GU, we formulate sparsi-
fication as an ℓ0 optimization problem and approximate the
solution of the ℓ0 problem by solving the reweighted ℓ1 prob-
lem. When sparsifying a graph, GU maintains the graph fil-

GCN SSGC SGC
70

72

74

76

78

80

77.4 77.3

73.6

79.9

77.7

74.5

Backbone

A
cc

ur
ac

y
%

SS
GU

(a) Cora, sparsity 46%

GCN SSGC SGC

66

68

70

72

74

68.9

70.4
70.7

69.9

71.3
71.0

Backbone

A
cc

ur
ac

y
%

SS
GU

(b) Citeseer, sparsity 35%

GCN SSGC SGC
72

74

76

78

80

73.13

77.4

76.476.49

78.85

76.55

Backbone

Ac
cu

ra
cy

%

SS
GU

(c) Pubmed, sparsity 30%

GCN SSGC SGC

60

62

64

66

68

70

64.52

60.15 60.07

66.87
67.23

65.98

Backbone

Ac
cu

ra
cy

%

SS
GU

(d) NELL, sparsity 25%

Fig. 1. Performance comparison of the GCN family with
Graph Ultra-sparsifier (GU) and Spectral Sparsifier (SS) un-
der the same sparsity level given by Spectral Sparsifier (SS).

ter of the GCN family such that the generated ultra-sparse
graphs from GU can be used in the GCN family, achieving the
same (or better) performance as that of the GCN family using
original graphs. Experimental results on real-world datasets
demonstrate that the proposed ultra-sparsifier can generate
ultra-sparse graphs. Simultaneously, the ultra-sparse graphs
can be used as inputs to the GCN family, which achieves
the best classification accuracy when compared to that of the
GCN family using sparse graphs from other graph sparsifiers.

5. ACKNOWLEDGEMENTS

This research was supported by the National Science Founda-
tion under awards CAREER IIS-1942929.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on May 22,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

6. REFERENCES

[1] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol.
32, no. 1, pp. 4–24, 2021.

[2] Thomas N. Kipf and Max Welling, “Semi-supervised
classification with graph convolutional networks,” in
ICLR, 2017.

[3] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger, “Simplify-
ing graph convolutional networks,” in Proceedings of
the 36th International Conference on Machine Learn-
ing, Kamalika Chaudhuri and Ruslan Salakhutdinov,
Eds., Long Beach, California, USA, 09–15 Jun 2019,
vol. 97 of Proceedings of Machine Learning Research,
pp. 6861–6871, PMLR.

[4] Hao Zhu and Piotr Koniusz, “Simple spectral graph
convolution,” in International Conference on Learning
Representations, 2021.

[5] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong,
Jingchao Ni, Haifeng Chen, and Xiang Zhang, “Learn-
ing to drop: Robust graph neural network via topologi-
cal denoising,” in Proceedings of the 14th ACM Inter-
national Conference on Web Search and Data Mining,
New York, NY, USA, 2021, WSDM ’21, p. 779–787,
Association for Computing Machinery.

[6] Jiayu Li, Tianyun Zhang, Shengmin Jin, Makan Fardad,
and Reza Zafarani, “Adversparse: An adversarial at-
tack framework for deep spatial-temporal graph neural
networks,” in ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022, pp. 5857–5861.

[7] Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin,
Makan Fardad, and Reza Zafarani, “Graph sparsifica-
tion with graph convolutional networks,” International
Journal of Data Science and Analytics, vol. 13, no. 1,
pp. 33–46, 2022.

[8] András A. Benczúr and David R. Karger, “Approximat-
ing s-t minimum cuts in Õ(n2) time,” in STOC, 1996.

[9] Daniel A. Spielman and Shang-Hua Teng, “Nearly-
linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems,” 2006.

[10] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song,
Jingchao Ni, Wenchao Yu, Haifeng Chen, and Wei
Wang, “Robust graph representation learning via neu-
ral sparsification,” in ICML, 2020.

[11] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang, “Dropedge: Towards deep graph convolutional
networks on node classification,” in ICLR, 2020.

[12] Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin,
Makan Fardad, and Reza Zafarani, “Sgcn: A graph
sparsifier based on graph convolutional networks,” in
PAKDD, 2020.

[13] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang,
and Zhangyang Wang, “A unified lottery ticket hypoth-
esis for graph neural networks,” in Proceedings of the
38th International Conference on Machine Learning,
Marina Meila and Tong Zhang, Eds. 18–24 Jul 2021,
vol. 139 of Proceedings of Machine Learning Research,
pp. 1695–1706, PMLR.

[14] Emmanuel J. Candes, Michael B. Wakin, and Stephen P.
Boyd, “Enhancing sparsity by reweighted l1 minimiza-
tion,” 2007.

[15] Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin
Zhou, Caiwen Ding, Makan Fardad, and Yanzhi
Wang, “A unified dnn weight pruning framework
using reweighted optimization methods,” in 2021
58th ACM/IEEE Design Automation Conference (DAC).
2021, p. 493–498, IEEE Press.

[16] Daniel A. Spielman and Shang-Hua Teng, “Spectral
sparsification of graphs,” CoRR, vol. abs/0808.4134,
2008.

[17] Qimai Li, Xiao-Ming Wu, and Zhichao Guan, “Gen-
eralized label propagation methods for semi-supervised
learning,” CoRR, vol. abs/1901.09993, 2019.

[18] G. W. Stewart and Ji guang Sun, Matrix Perturbation
Theory, Academic Press, 1990.

[19] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic,
Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad,
“Collective classification in network data,” AI Maga-
zine, vol. 29, no. 3, pp. 93–106, 2008.

[20] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka, and Tom M. Mitchell,
“Toward an architecture for never-ending language
learning,” in Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence. 2010, AAAI’10,
p. 1306–1313, AAAI Press.

[21] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
Jonathan Eckstein, et al., “Distributed optimization and
statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine
learning, vol. 3, no. 1, pp. 1–122, 2011.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on May 22,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

