
Representing Networks with 3D Shapes

Shengmin Jin
Data Lab, EECS Department

Syracuse University

shengmin@data.syr.edu

Reza Zafarani
Data Lab, EECS Department

Syracuse University

reza@data.syr.edu

Abstract—There has been a surge of interest in machine
learning in graphs, as graphs and networks are ubiquitous
across the globe and within science and engineering: road
networks, power grids, protein-protein interaction networks,
scientific collaboration networks, social networks, to name a
few. Recent machine learning research has focused on efficient
and effective ways to represent graph structure. Existing graph
representation methods such as network embedding techniques
learn to map a node (or a graph) to a vector in a low-dimensional
vector space. However, the mapped values are often difficult to
interpret, lacking information on the structure of the network
or its subgraphs. Instead of using a low-dimensional vector to
represent a graph, we propose to represent a network with a
3-dimensional shape: the network shape. We introduce the first
network shape, a Kronecker hull, which represents a network as
a 3D convex polyhedron using stochastic Kronecker graphs. We
present a linear time algorithm to build Kronecker hulls. Network
shapes provide a compact representation of networks that is easy
to visualize and interpret. They captures various properties of
not only the network, but also its subgraphs. For instance, they
can provide the distribution of subgraphs within a network, e.g.,
what proportion of subgraphs are structurally similar to the
whole network? Using experiments on real-world networks, we
show how network shapes can be used in various applications,
from computing similarity between two graphs (using the overlap
between network shapes of two networks) to graph compression,
where a graph with millions of nodes can be represented with a
convex hull with less than 40 boundary points.

Index Terms—Network Shapes, Graph Representation, Kro-
necker Hulls, Network Convex Hull

I. INTRODUCTION

Networks have become a universal language for describing

complex data from science, engineering, and our daily life.

Networks are used to study the role of a protein in biology [1],

friendships in a social network [2], human emotions [3],

among many other phenomena [4]. A compact, interpretable,

visualizable, and efficient representation of networks facilitates

scientific discoveries in a wide range of disciplines. Machine

learning research aims to develop such network representa-

tions. Recent advancements in network representation, e.g.,

in network embedding [5]–[7] or latent representation learn-

ing [8], aim to learn a mapping from a (sub)graph, or its nodes,

to points in a low-dimensional vector space. For example,

a three node graph such as can be represented as a 2-

dimensional vector: (1.24, 8.91). These techniques have shown

remarkable performance in many applications, but face two

fundamental limitations:

I. Interpretability. It is often difficult to understand the

intuition behind learned representations. For instance, node (or

subgraph) embedding techniques map nodes (or subgraphs)

to points in a d-dimensional space, where no interpretation

is often provided for such d dimensions. More specifically,

when a graph is mapped to a point (a d-dimensional vector),

one can hardly determine its exact structural properties from

this vector, e.g., is it a dense network? The vector is mostly

treated as a set of numeric features, limiting its usage.

II. Preserving Subgraph Information. As existing graph

embedding approaches [9]–[11] map a network into a d-

dimensional vector, the information on the subgraphs of this

network are mostly aggregated, or lost. Hence, given the

embedding for the whole network, it is challenging to identify

how embeddings for its subgraphs would look like. One

might hypothesize that for a network with billions of nodes,

samples (i.e., subgraphs) that are close in size to the original

network should have similar embeddings; however, for a small

subgraph such as a triad , which is a subgraph of many

networks, the embedding should not be necessarily similar

to that of the original network. Statistically speaking, graph

embedding is taking a sample from a network (i.e., a subgraph)

and computing a statistic (i.e., an embedding) for that one

sample, ignoring the sampling distribution: the distribution of

embedding values for all subgraphs. We denote the distribution

of embedding values for all subgraphs of a network as the

network’s embedding space. With a graph representation that

can provide (1) the network’s embedding space, or (2) means

to approximate the embedding of a subgraph, e.g., using the

embeddings of the whole network and/or some of its other

subgraphs, one can preserve subgraph information.

The Present Work: Network Shapes. To address these

limitations, we propose to represent a network as a set of

vectors, representing the network and its subgraphs. These

vectors will represent the embedding space of the network.

By ensuring that these vectors are in a 3-dimensional space,

and by identifying a 3D shape that contains all such 3D

vectors, the network (and its subgraphs) can be represented

as a 3D shape. We denote this shape as the network shape.

We present the steps required to build network shapes, and the

first algorithm for constructing network shapes. The algorithm

is highly efficient, i.e., linear in the number of nodes and

edges. The algorithm maps graphs into a 3D shape using

stochastic Kronecker graphs and represents network shapes
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using a convex hull, i.e., a convex polyhedron. We denote this

network shape as the Kronecker Hull of the network. Overall,

our contributions are mainly the following:

1) We propose network shapes, a 3D representation for

a network that (i) is easy to interpret; (ii) captures

various properties of not only the network, but also its

subgraphs; (iii) facilitates easy network visualization; and

(iv) enables various applications and comparative studies;

2) We propose Kronecker Hull, a network shape that rep-

resents a network and its subgraphs via a [convex]

polyhedron in the three dimensional space;

3) We demonstrate how properties of a Kronecker hull (e.g.,

its volume or location) are connected to the structure

of the network it represents. We study Kronecker hull

properties using extensive experiments on eighteen real-

world networks from four different categories; and

4) We show applications of network shapes in characterizing

graphs (e.g., how does a 10% subgraph look like?),

network categorization (e.g., is this a social or a biological

network?), and computing graph similarity.

Implications of Network Shapes. Representing networks as

3D shapes has multiple benefits and applications:

� Compact Representation of Networks. Network shapes can

help represent networks (and their embedding space) com-

pactly. In most of our experiments, we can represent networks

with million of nodes using shapes that can be represented

with less than 40 boundary points.

� Visualizing Networks. Visualizing large graphs is chal-

lenging. This difficulty lies in the natural clutter, crossing,

and overdrawing issues [12]. Network shapes help visualize

networks (and their embedding space) with limited clutter.

� Interpretation. By properly designing network shapes, they

can help illustrate structural properties of graphs and how a

network is composed of subgraphs with different properties.

� Features. Features from network shapes such as their bound-

ary points, center of gravity, volume, and other geometrical

properties can capture various information about the network

and its subgraphs and can be used for machine learning.

� Applications. Network shapes can be utilized in different

applications, e.g., in computing graph similarity: The overlap

of the shapes can indicate some level of similarity.

The rest of the paper is organized as follows. In Section

II, we detail the necessary steps to build network shapes. In

Section III, we discuss stochastic Kronecker graphs, the foun-

dation behind Kronecker hulls (a network shape). Section IV

provides the algorithm for computing the Kronecker Hull and

its time complexity analysis. We summarize our experimental

setup and data in Section V. With various experiments, we

look into the properties of Kronecker hulls in Section VI.

Section VII provides some applications which utilize network

shapes. After reviewing additional related work in Section

VIII, we conclude the paper in Section IX.

II. BUILDING NETWORK SHAPES

The following simple steps can help build a network shape:

Step 1: Sample many subgraphs from the network

Step 2: Map the network and its subgraphs to 3D vectors

Step 3: Fit a 3D Shape to the set of 3D vectors

The first requirement for constructing network shapes is

a sampling method. Any sampling method can work. In

our algorithm, we have utilized Random Node Sampling
strategy [13]. Random node sampling uniformly at random

selects a proportion p of nodes from a graph and the sample

subgraph is then the graph induced by these selected nodes.

Random node sampling is shown to perform well for various

network measurements [13] and is a fast algorithm with linear

time complexity. To sample systematically, one can sample

by varying proportions of nodes (e.g., from 0% to 100%)

with some fixed step size s. To control for variations, for

each proportion, one can sample t independently sampled

subgraphs, i.e., a total of t× s subgraphs for one network.

The second requirement for constructing network shapes

is an embedding technique that can map a network to a 3D
point. The technique should provide embedding vectors that

are easy to interpret and can capture the properties of the

network and its subgraphs. Given such a technique, we can

represent a network and its subgraphs as a set of 3D points.

Similarly, one can think of many fast techniques to map a

graph into a 3D vector, e.g., represent it with its (diameter,

average path length, clustering coefficient). Here, we consider

Stochastic Kronecker Graphs [14] as an appropriate candidate

for mapping a graph into an interpretable 3D point, which we

denote as the Kronecker point. In Section III, we investigate

the properties and interpretation of Kronecker points.

The third and final requirement for building network shapes

is a technique to fit a 3D shape to a set of 3D points obtained

in Step 2 (3D embedding). While this can be done by fitting

a variety of shapes (e.g., spheres), we consider building a

network shape from a set of 3D points by computing its

convex hull. A convex hull, for a set of points in a Euclidean

space, is the smallest convex set that contains all the points

in the original set [15]. Convex hull of a finite set of n points

in a three-dimensional space can be computed with at most

O(n log n) operations [16].

III. STOCHASTIC KRONECKER GRAPHS

Stochastic Kronecker graphs [14] provide an approach to

model large-scale graphs using the Kronecker product ⊗
matrix operation. The Kronecker product generalizes matrix

outer product, e.g., the Kronecker product of [ 1 2
3 4 ] and [ 0 5

6 7 ],
denoted as [ 1 2

3 4 ]⊗ [ 0 5
6 7 ] is

[ 1 2
3 4 ]⊗ [ 0 5

6 7 ] =

[
1·[ 0 5

6 7 ] 2·[ 0 5
6 7 ]

3·[ 0 5
6 7 ] 4·[ 0 5

6 7 ]

]
=

[
1·0 1·5 2·0 2·5
1·6 1·7 2·6 2·7
3·0 3·5 4·0 4·5
3·6 3·7 4·6 4·7

]

=

[
0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28

]
.
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When modeling a network using Stochastic Kronecker

graphs, we aim to learn a small probability matrix P ∈ R
n×n,

known as the Kronecker initiator matrix, such that the kth

Kronecker power of P (i.e., P⊗k = P ⊗ P · · · ⊗ P︸ ︷︷ ︸
k times

) is most

likely to have generated the adjacency matrix A ∈ R
nk×nk

of

the graphs which we are modeling, i.e., P (A|P ) is maximized

(for further details refer to Ref. [14]). The KRONFIT algorithm

can estimate the Kronecker initiator matrix for a real-world

graph using maximum likelihood and in linear time [14].

A. Kronecker Points
Consider fitting a 2×2 Kronecker initiator matrix I =

[
a b
c d

]
to a network. In an undirected network, where the adjacency

matrix is symmetric, the Kronecker initiator matrix learned is

also symmetric, i.e., b = c. Thus, one can embed an undirected

network, or any of its subgraphs, to a point (a, b, d) in the 3-D

space, which we denote as the Kronecker point of a graph.
Kronecker points (a, b, d) have basic properties:

I. By definition, Kronecker initiator matrices are probability

matrices, i.e., values a, b and d are all between 0 and 1. Hence,

all possible graphs can be embedded in a 1× 1× 1 cube.

II. Without loss of generality, we can assume that a ≥ d.

Consider two initiator matrices
[
a b
b d

]
and

[
d b
b a

]
that only

differ with respect to the positions of a and d, i.e., we can

obtain one by simultaneous shuffling of rows and columns

of the other based on some permutation. Calculating the

kth Kronecker power of both initiator matrices yields two

adjacency matrices for two graphs. We can simply prove that

these two graphs are indeed the same graph, i.e., the graphs

are isomorphic. Assume P is a permutation matrix: a square

binary matrix with exactly one entry of 1 in each row and

column, and 0s elsewhere. Let X denote any initiator matrix.

Then PXPT represents a simultaneous shuffling of rows and

columns of X according to permutation P . By Kronecker

product properties (PXPT )⊗k = P⊗kX⊗k(P⊗k)T . As P⊗k

is also a permutation matrix, the graph represented by adja-

cency (PXPT )⊗k is the same as the one by X⊗k.

B. Connections to network structure
One can interpret the 2× 2 initiator

[
a b
b d

]
of an undirected

network as a recursive expansion of two groups of network

nodes into subgroups [14]. We can interpret a and d as the

proportion of edges within each of the groups, and b as the

proportion of edges between the two groups. As proved, we

can assume that a ≥ d; hence, we can split the whole space

into three regions, i.e., split all possible networks into three

types. Each region represents a different network structure. We

denote these regions as Core-Periphery (a ≥ b ≥ d), Dual-
Core (a ≥ d ≥ b), and Random (b ≥ a ≥ d).(

Core-Periphery (a ≥ b ≥ d)

In networks with this configuration, at the high-level, the

network can be divided into two groups. One group is dense

with many connections as value a is the largest; fewer connec-

tions exist within the nodes in the other group as highlighted

by value d; and moderate connections exist between nodes

from different groups. Many real-world networks exhibit a

core-periphery structure [17], where they form a core group

and another group which acts as its periphery. Value a repre-

sents the core strength.

Dual-Core (a ≥ d ≥ b)

In this configuration, each group is internally well-

connected but the connections between the two groups are

sparse. We denote this configuration as the Dual-Core struc-

ture. Basically, the two groups of nodes form two major cores

of the network, of which one exhibits a stronger core strength,

and they are relatively independent of each other. Values a and

d represent the core strength of each group.

Random (b ≥ a ≥ d)

This configuration is quite different from the previous two.

Essentially, one can not find two recursive groups with more

connections within each group than across groups. To some

extent, it is indication that there is not much difference in the

importance, or “coreness” among nodes. This reminds us of

random graphs, such as those generated by the Erdös-Rényi

G(n, p) model [18], where a random network of n nodes is

created in which every edge exists with an equal probability

p. To validate our speculation, we generate many random

networks by fixing the number of nodes n = 1024 and varying

the probability p. We compute the Kronecker points of these

networks to obtain a, b, and d values. Figure 1 illustrates that

for a random network, we almost always have b ≥ a ≥ d,

unless the graph is really dense, e.g, p > 0.75. We observe

the same pattern for n = 2048, 4096 and 8192. One may note

that when p is close to 0, the random network is empty, but

value b does not converge to 0. This is an artifact caused by

an overestimation in the KRONFIT algorithm, which we will

detail when we discuss the limitations of KRONFIT.

For any graph or its subgraphs, their Kronecker points

should be located within one of these three regions. This ob-

servation inspires us to represent a network using the location

of the Kronecker points of the network and its subgraphs, e.g.,

a network that exhibits a core-periphery structure at the whole-

network level, but most of its subgraphs are random graphs.
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0.4

0.6
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d

Fig. 1: Distribution of Kronecker points (a, b, d) for Random

Networks G(n, p). Here, n = 1024. We observe that in random

graphs, unless the graph is really dense, b ≥ a ≥ d.
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Algorithm 1: KRONECKER HULL algorithm
input : an undirected network graph: G(V,E)
output : the Kronecker hull of G: KHG

parameter: s : sampling proportion step size;

t : number of samples for one proportion;

Kronecker points = { };
for ( p = s; p < 100%; p = p+ s ) {

for ( i = 1; i ≤ t; i = i+ 1 ) {
%Sample a subgraph Gp

Gp = RandomNodeSampling(G, p);

%Fit Kronecker Initiator to Gp[
a b
c d

]
= KRONFIT(Gs, 2);

Kronecker point = (a, b, d);

Kronecker points.add(Kronecker point);
}

}[
a b
c d

]
= KRONFIT(G, 2);

Kronecker point = (a, b, d);

Kronecker points.add(Kronecker point);
KHG = Quickhull(Kronecker points);%Convex Hull
return KHG;

C. KRONFIT Limitations

KRONFIT can provide interpretable Kronecker points, but

has a few limitations that may lead to over/underestimation.

When the number of nodes within a real-world network is not

a power of 2, KRONFIT will add isolated nodes so that the

number of nodes becomes a power of 2 [19]. Adding isolated

nodes may lead to underestimation of the parameters as it

decreases the overall edge density and core strength of the

groups. On the other hand, as the input to KRONFIT is a

list of edges, when the network is extremely sparse and the

graph size is small, KRONFIT can overestimate as it overlooks

real isolated nodes within the network. The aforementioned

overestimation in sparse random network fits this second case.

IV. KRONECKER HULL

We introduce an algorithm to obtain the Kronecker hull of

a network, and analyze its time complexity. The algorithm

pseudocode is provided in Algorithm 1. The algorithm utilizes

Random Node Sampling to sample many subgraphs from the

network by (1) varying the proportion of nodes from 0% to

100% with step size s and (2) taking t independent samples

for each proportion. For each sample (and the whole network),

the algorithm computes its Kronecker point via KRONFIT

algorithm. Finally, the convex hull of these Kronecker points

are computed, using Quickhull algorithm [20], to obtain the

Kronecker hull of the graph. The implementation is available

at: https://github.com/shengminjin/KroneckerHull

Time Complexity. For one subgraph, random node sampling

takes O(n+m) and KRONFIT takes O(n+m), where |V | = n
and |E| = m. Hence, for each subgraph, the time complexity is

O(n+m). We have a total of 100
s ×t+1 graphs (a network and

its subgraphs) for which we compute Kronecker points. As the

number of Kronecker points is very small compared to the size

of the network, the time spent on computing the convex hull

is constant. Hence, the time complexity to compute Kronecker

hull is O( ts (n+m)), linear in the number of nodes and edges.

V. EXPERIMENTAL SETUP

For our experiments, we generate Kronecker hulls for var-

ious real-world networks by varying the proportion of nodes

from 0% to 100% with step size 10%, i.e., s = 10% in

Algorithm 1; for each proportion (except for 100% which

represents the whole graph), we generate 20 independently

sampled subgraphs, i.e., t = 20 in Algorithm 1. In total, we

generate 20×9+1 = 181 Kronecker points for each network,

using which we obtain the Kronecker hull for the network.

Next, we summarize the network data used in our experiments.

A. Datasets

For our experiments, we use eighteen real-world networks

from four general network categories: social networks, collab-

oration networks, road networks, and biological networks.

Social Networks: In total, we have eight social networks, and

they are from three sub-categories.

� Location-based Social Networks:
Brightkite and Gowalla [21]: were both once location-based

social networking sites where users shared their locations

by checking-in. Both networks were originally directed but

have been converted to undirected where an undirected edge

between users exist when friendships in both directions exist.

� Friendship-based Social Networks:
Hyves [22]: the most popular social networking site in the

Netherlands with mainly Dutch visitors. It competes with sites

such as Facebook and MySpace in that country.

Orkut [21]: was a social networking website owned and

operated by Google, shutdown in 2014.

Livejournal [23]: a social network where users can keep a

blog or journal. Users can form friendship or follow others.

In this dataset, edges represent friendships (undirected).

MySpace [23]: a social network with emphasis on music.

� Video-Sharing or Movie Sites:
YouTube [21]: a video-sharing site with a social network.

Flixster [22]: a social movie site allowing users to buy, rent,

or watch movies, share ratings, and discover new movies.

Collaboration Networks: We include four collaboration net-

works from arXiv.org, which include scientific collaborations

between authors with different scientific interests. In a collab-

oration networks, an undirected edge between nodes i and j
exists, if authors i and j have co-authored at least one paper.

Astro-Ph [21]: Astro physics.

Cond-Mat [21]: Condense matter physics.

Gr-Qc [21]: General relativity and quantum cosmology.

Hep-Th [21]: High energy physics theory.

Road Networks: We include three road networks. In road net-

works, nodes are intersections/endpoints and undirected edges

are the roads connecting these intersections/road endpoints.
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TABLE I: Dataset Statistics

Type Network |V | = n |E| = m
Average
Degree

Clustering
Coefficient

Social
Networks

Brightkite 58,228 214,078 7.353 0.1723
Flixster 2,523,386 7,918,801 6.276 0.0834
Gowalla 196,591 950,327 9.668 0.2367
Hyves 1,402,673 2,777,419 3.960 0.0448
Livejournal 3,017,286 85,654,976 56.776 0.1196
MySpace 854,498 5,635,296 13.190 0.0433
Orkut 3,072,441 117,185,083 76.281 0.1666
YouTube 1,134,890 2,987,624 5.265 0.0808

Collaboration
Networks

Astro-Ph 18,772 198,050 21.100 0.6306
Cond-Mat 23,133 93,439 8.078 0.6334
Gr-Qc 5,242 14,484 5.526 0.5296
Hep-Th 9,877 25,973 5.259 0.4714

Road
Networks

Road-CA 1,965,206 2,766,607 2.816 0.0464
Road-PA 1,088,092 1,541,898 2.834 0.0465
Road-TX 1,379,917 1,921,660 2.785 0.0470

Biological
Networks

Bio-Dmela 7,393 25,569 6.917 0.0119
Bio-Grid-Yeast 5,870 313,890 104 0.0516
Human-Brain 177,600 15,669,036 176 0.4580
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Fig. 2: Kronecker Hull for Hyves Social Network

Road-CA [21]: the road network of California.

Road-PA [21]: the road network of Pennsylvania.

Road-TX [21]: the road network of Texas.

Biological Networks: We include three biological networks.

Bio-Grid-Yeast and Bio-Dmela [21]: both protein-protein

interaction networks.

Human-Brain [21]: the network of human brain.

The data statistics are summarized in Table I. To assess

the impact of network structure on Kronecker hulls, for each

real-world network, we generate a random synthetic network

with a perturbed network structure, but with the same degree

distribution, i.e., a null model. We create the null model using

the configuration model [24], which can generate a random

network with the same degree distribution and edge density

(i.e., |E|/(|V |2 )
) as the given real-world network.

VI. KRONECKER HULL CHARACTERISTICS

To investigate the characteristics of Kronecker Hulls, we

compute the Kronecker Hull for all networks. Figure 2 pro-

vides the Kronecker hull for one of our social networks:

Hyves. The points on the boundary (or within) the Kronecker

hull are Kronecker points (a, b, d) representing different sam-

pling proportions. The Kronecker points are colored differently

for different sampling proportions. We investigate different

characteristics of Kronecker Hulls, but more importantly how

the structure of a network is connected to those characteristics.

In particular, we look at the volume, location, internal points,

and boundaries of Kronecker hulls.

A. Volume of Kronecker Hulls

As a Kronecker hull is a convex hull, its volume can be

easily computed via triangulation. How is the volume of a

Kronecker hull connected to the properties of the network it

represents? Table II provides the volumes of the Kronecker

hulls, denoted by volume(G), for all networks. We observe

that for social, road, and biological networks, volumes are

between 3.5× 10−5 to 1.7× 10−3. The maximum possible

volume of a Kronecker hull can be 1 as values a, b, and d lie

in range [0, 1]. Hence, the Kronecker hulls of these networks

are compact from a volume perspective, taking up only about

one thousandth of the whole space. Volumes of collaboration

networks are much larger, varying from 3.4× 10−3 to 0.2,

which we speculate is due to their specific network structure.

To investigate the impact of network structure on the volume

of Kronecker hull, for any graph G, we compare the volume

of its Kronecker hull volume(G) to that of its null model

volume(Gnull). Note that null models have the same edge

density and degree distribution as the original graph, but with

a random network structure. Hence, any change in volume

indicates that network structure has an impact on volume. To

compare volumes, we compute the ratio
volume(G)

volume(Gnull)
. While

we observe that for all networks, the ratio is not equal to 1,

indicating that network structure has an impact on the volume,

the ratio often takes a value between 0.5 to 2, i.e., the actual

volume can be at most twice, or at least half of that of its null

model. We believe this finding can have implications in finding

proper null models. As speculated, collaboration networks are

outliers, with their network structures most damaged when

constructing their null models: their Kronecker hull volume is

much larger than that of their null models. Our further analysis

indicated a strong correlation (ρ = 0.88) between volume

ratios and the clustering coefficient of networks, which is high

in collaboration networks and is dramatically reduced in null

models. We also conducted a multiple linear regression to

predict volume based on five predictors: |V |, |E|, edge density,

average degree, and clustering coefficient. The regression

coefficients also indicated that volume is strongly correlated

to the edge density and clustering coefficient, with regression

coefficients being nearly 0 for the other three variables.

B. Location of Kronecker Hulls

To identify network properties that impact the location of a

Kronecker hull, one must seek properties that when changed

within a network, the new Kronecker hull for the modified

network is at a different location in the 3D space, i.e., has less

than 100% overlap with the original Kronecker hull. Hence, to

investigate the impact of network structure on Kronecker hull

location, we compute the overlap between Kronecker hulls of

networks with that of their null models. We define the overlap

between Kronecker hulls for networks A and B as

overlap(A,B) =
volume(KHA ∩ KHB)

min(volume(KHA), volume(KHB))
, (1)

where volume is the volume of a Kronecker hull, and KHA

and KHB represent Kronecker hulls of graphs A and B,
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TABLE II: Kronecker Hull Volume

Type Networks
Edge Density

(×10−4)

Actual Graph Null-Model
Ratio

volume(G)
volume(Gnull)

overlap(G,Gnull)volume(G)
(×10−4)

Clustering
Coefficient

volume(Gnull)
(×10−4)

Clustering
Coefficient

Social
Networks

Brightkite 1.262 6.22 0.1723 8.56 0.0053 0.73 70.49 %
Flixster 0.025 3.42 0.0834 4.39 0.0012 0.78 83.87 %
Gowalla 0.492 13.00 0.2367 7.86 0.0103 1.61 51.63 %
Hyves 0.028 4.22 0.0448 5.52 0.0030 0.76 78.44 %
Livejournal 0.188 1.93 0.1196 1.44 0.0013 1.34 75.69 %
MySpace 0.154 3.75 0.0433 2.90 0.0037 1.29 86.37 %
Orkut 0.248 0.44 0.1666 0.99 0.0006 0.45 26.38 %
YouTube 0.046 5.87 0.0808 5.94 0.0065 0.99 90.86 %

Collaboration
Networks

Astro-Ph 11.241 34.00 0.6306 3.89 0.0094 8.67 0 %
Cond-Mat 3.492 98.00 0.6334 15.00 0.0022 6.36 16.99 %
Gr-Qc 10.544 200.00 0.5296 15.00 0.0053 13.50 8.23 %
Hep-Th 5.325 90.00 0.4714 13.00 0.0018 7.19 29.07 %

Road
Networks

Road-CA 0.014 10.00 0.0464 11.00 3.4× 10−7 0.89 87.57 %
Road-PA 0.026 9.99 0.0465 9.72 3.5× 10−6 1.03 72.89 %
Road-TX 0.020 7.05 0.0470 8.31 0.0000 0.85 74.98 %

Biological
Networks

Bio-Dmela 9.360 17.00 0.0119 20.00 0.0067 0.85 95.35 %
Bio-Grid-Yeast 173.950 9.72 0.0516 10.00 0.0694 0.97 91.72 %
Human-Brain 9.937 0.35 0.4580 0.10 0.0169 3.50 33.59 %
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Fig. 3: Kronecker Hull of Hyves with Sphere fit

respectively. We define the overlap as a ratio: the volume of

the intersection KHA ∩ KHB normalized by the volume of

the smaller Kronecker hull. It is easy to prove that given any

collection of convex sets (finite, countable or uncountable),

their intersection is a convex set. Therefore, the intersection

of two Kronecker hulls KHA ∩KHB is also convex, allowing

us to easily compute its volume. The results are in Table II.

We observe an overlap that is less than 100% in all networks,

indicating that network structure has an impact on the location

of Kronecker hulls. Similar to our observations with respect

to volume, (i) collaboration networks are outliers with very

small overlaps and (ii) clustering coefficients of networks are

strongly negatively correlated (ρ = −0.86) to their overlaps. In

addition, ratios
volume(G)

volume(Gnull)
are strongly negatively correlated

(ρ = −0.77) to overlaps overlap(G,Gnull) indicating that,

e.g., when network structure is damaged, Kronecker hulls

shrink in volume and move far from their original location.

C. Internal Points

By definition, a point within a Kronecker hull of a network

represents a sample from this network, i.e., a subgraph.

Here, we investigate (1) how samples are distributed within

a Kronecker hull and (2) how distances between samples are

connected to similarities between corresponding subgraphs.

Fig. 4: Radius of Spheres Fit to Subgraph Kronecker Points
(a) Social Networks
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(b) Collaboration Networks
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(c) Road Networks
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(d) Biological Networks
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� Sample Distribution. In the Hyves example provided in

Figure 2, a clustering phenomenon is observed: points repre-

senting samples of the same proportion appear to be clustered.

To verify whether such a clustering exists, we fit a sphere to

the points that represent the same sample size (see Figure 3).

The sphere better visualizes the location of the cluster and its

radius captures the variance. For all networks, we compute the

radii of all such spheres; the results are in Figure 4. We find

that the clustering phenomenon is observed for most networks,

with relatively small radii that decreases as the sampling

proportions increase. Compared to other networks, the radii

of spheres of collaboration networks are larger, especially in

smaller samples, i.e., clustering is not obvious. We speculate

that this observation is due to samples being taken from

different academic communities within the graph. Overall, our

observations indicate that given a point within a Kronecker

hull, nearby points are likely to be samples of the size.
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Fig. 5: Distances between Sphere Centers (representing sub-

graph Kronecker points) and the Whole-graph Kronecker Point

(a) Social Networks
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(b) Collaboration Networks
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(c) Road Networks
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(d) Biological Networks
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� Between-Sample Distances. Consider two subgraphs of a

network, each represented as a Kronecker point within the

Kronecker hull of the network. Ideally, we hope that the

distance between these two Kronecker points is related to

the similarity between these two subgraphs. However, mea-

suring similarity between two graphs can be challenging and

subjective. To circumvent the challenge of computing graph

similarity, we compute the distances between Kronecker points

of graphs for which we have an intuitive understanding of their

similarity. Here, we compute the distances between Kronecker

points of different subgraphs and that of the whole network.

This decision is based on the intuition that by increasing the

sampling proportion, subgraphs should become more similar

to the whole network (a 100% subgraph). As samples of

the same proportion are clustered, we compute the Euclidean

distance between the Kronecker point of the whole network

and the sphere centers (representing Kronecker points for

different sampling proportions). Figure 5 illustrates that with

the increase in sampling proportion, sphere centers become

closer to the Kronecker point of the whole network, indi-

cating a convergence in Kronecker points as graphs become

more similar. Looking at networks from different categories,

we observe that (1) for social and biological networks, the

distances drop fast when the sampling proportion increases

from 10% to 30%, which suggests network structure of a 30%

subgraph can be close to that of the whole network, when

sampled using random node sampling; (2) for road networks,

the sphere centers are far when the sampling proportion is

small. With the increase in sampling proportion, the distances

drop sharply when samples are below 60% and become very

small after they reach 70%; (3) for collaboration networks,

we observe a general decreasing trend in distances, but unlike

other networks, there is an oscillation.

Fig. 6: Kronecker Hull Boundary Points Distribution. The

numbers in the legend specify the number of boundary points.
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(b) Collaboration Networks
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(c) Road Networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Proportion

Pe
rc

en
ta

ge
of

B
ou

nd
ar

y
Po

in
ts

Road-CA (44)
Road-PA (40)
Road-TX (39)
Average (41)

(d) Biological Networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0

.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Proportion

Pe
rc

en
ta

ge
of

B
ou

nd
ar

y
Po

in
ts

Bio-Grid-Y
east (22)Bio-Dmela
(27)Human-Brain

(16)Average (21.7)

D. Boundaries

Figure 6 provides the number (in the legend) and the

distribution of boundary points of Kronecker hulls. We find

that number of boundary points ranges from 16 to 49, and for

most networks is between 30-40, out of the total of 181 points.

Points from very small samples, especially those for sampling

proportion 10%, are more likely to be boundary points. Points

from middle size samples are more likely to be within the

hull. Overall, we observe a continuity in points being on the

boundary with the increase in sampling proportion. These

findings suggest that (1) a limited number of points (e.g.,

40) is required to store a Kronecker hull; (2) we can sample

fewer points for each proportion to construct a Kronecker hull;

and (3) boundary points can be used as compact features for

machine learning on graphs.

VII. APPLICATIONS

We present some applications of network shapes. In partic-

ular, we use Kronecker hulls to (A) describe a network and its

subgraphs, (B) identify the category a network belongs to (e.g.,

road), and (C) study the similarity between two networks.

A. Characterizing Networks and their Subgraphs

As detailed in Section III, a Kronecker point, representing

any graph, is guaranteed to fall within one of three regions:

Core-Periphery, Dual-Core, and Random, where each region

represents a specific network structure. This property allows

one to describe the whole network, its subgraph(s), or a 3D

space within its Kronecker hull.

We demonstrate this application by analyzing our networks.

For each network, Table III provides the regions in which

the whole graph and its 180 subgraphs are located. We make

observations at the (I) whole-network or (II) subgraph levels:
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TABLE III: Subgraphs of Networks. Subgraphs can exhibit a core-periphery structure , be dual-core , or random .

Here, symbol → indicates that the network structure observed (e.g., core-periphery) is the same as that of the smaller sampling

proportion (to the left). A parenthesis is used to list all network structures observed at a sampling proportion.

Types

�����������Network

Sampling
Proportion 10% 20% 30% 40% 50% 60% 70% 80% 90% Whole Graph

Social
Networks

Brightkite

Flixster

Gowalla

Hyves ( )

Livejournal

MySpace ( )

Orkut

YouTube

Collaboration
Networks

Astro-Ph ( ) ( ) ( )

Cond-Mat ( ) ( )

Gr-Qc ( ) ( ) ( ) ( ) ( )

Hep-Th ( ) ( )

Road
Networks

Road-CA ( )

Road-PA ( ) ( )

Road-TX

Biological
Networks

Bio-Dmela

Bio-Grid-Yeast

Human-Brain

I. Characterizing Networks. We identify region that the Kro-

necker point of the whole graph is within. We find that (1) all

social networks are in the Core-Periphery region, confirming

past research indicating that social networks exhibit a core-

periphery structure [17]; (2) three collaboration networks are

in the Core-Periphery region, and the other is in the Dual-Core

region; (3) all road networks are within the Dual-Core region,

which can be explained by the fact that road networks often

exhibit a recursive structure. For example, the connections

between two states are sparse, relying on a few highways or

trunk roads, while the connections within a state are denser.

This road structure also applies to two cities within a state;

(4) all biological networks are in the Core-Periphery region,

confirming past research that has observed a core-periphery

structure within protein-protein interaction networks [25] and

human brain [26]; and (5) no network is in the Random region.

II. Characterizing Subgraphs. By identifying the regions for

subgraphs, we find that: (1) for social and biological networks,

most subgraphs are in the same region in which the whole

network is in: the Core-Periphery region. This observation

indicates that small samples (e.g., 20%) of most social and

biological networks exhibit properties similar to that of the

whole network. This observation also explains our previous

observation on the rapid drop of distances between sphere

centers and the Kronecker point of the whole network when

the sampling proportion changes from 10% to 30%. We also

observe that when the sample is too small, the network core

is not yet formed in some samples, leading to those samples

being in the Random region; (2) for road networks, we find

sampled subgraphs that are less than 50% of the network are

often in the Random region, and after that exhibit a Dual-

Core structure. This transition explains why the distances

between sphere centers and the Kronecker point of the whole

network drop sharply when the proportion is less than 60%;

(3) for collaboration networks, the composition of subgraphs

is complex. For large samples, subgraphs exhibit either a Core-

Periphery or a Dual-Core structure. For small samples, we also

observe some Random subgraphs. Also, subgraph structure

184



Fig. 7: Kronecker hulls across Categories
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(c) Road vs. Biological
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TABLE IV: Overlap between Kronecker Hulls of Categories

Social Networks Collaboration Networks Biological Networks
Social Networks 100% 75.63% 8.92%

Collaboration Networks 75.63% 100% 4.22%
Biological Networks 8.92% 4.22% 100%

TABLE V: Kronecker Hull Overlaps for Social Networks

Brightkite Flixster Gowalla Hyves Livejournal MySpace Orkut YouTube
Brightkite 100% 0.07% 12.2% 0 0 0 0 0

Flixster 0.07% 100% 50.14% 0 0 9.25% 0 49.03%
Gowalla 12.2% 50.14% 100% 0 10.56% 0 0 11.64%
Hyves 0 0 0 100% 0 0 0 0

Livejournal 0 0 10.56% 0 100% 0 0 0
MySpace 0 9.25% 0 0 0 100% 0 16.52%

Orkut 0 0 0 0 0 0 100% 0
YouTube 0 49.03% 11.64% 0 0 16.52% 0 100%

strongly depends on sampled nodes. This complexity explains

why Kronecker points do not cluster well in collaboration

networks as same-size samples can exhibit various network

structures, e.g., for being from various academic communities.

B. Network Categorization

Kronecker hulls can help categorize networks, i.e., deter-

mine whether a network is a social network or a biological

one. We demonstrate the feasibility of network categorization

using Kronecker hulls. To categorize networks, we create

a Kronecker hull for a family of graphs (e.g., all social

networks). Here, for each network category (biological/so-

cial/road/collaboration), we create a Kronecker hull from the

Kronecker points (i.e., subgraphs) of all the networks within

that category. As depicted in Figure 7, Kronecker hull of

road networks is well-separated from those of the other three

categories. Basically, given a Kronecker hull of one road

network, or Kronecker points of some subgraphs from a road

network, one can easily verify that it is not from the other

three categories. For the other three categories, we compute the

overlap between their corresponding Kronecker hulls. From

Table IV, we find that biological networks have a small overlap

with the other two types of networks, meaning that it is

not very difficult to distinguish a biological network from

a social or a collaboration network. However, the overlap

between collaboration networks and social networks is large,

being over 75%. We plot both Kronecker hulls in Figure 7d.

This large overlap is not surprising, as both categories involve

human social behavior. Clearly, a comprehensive supervised

learning framework (e.g., that uses Kronecker hull attributes

as features) can further advance network categorization.

C. Computing Network Similarity

Kronecker hulls can capture various forms of (dis) similarity

between two networks:

I. Consider two large graphs A and B to be 100% similar when

A is a subgraph of B. By construction, Kronecker hull of A
will be within Kronecker hull of B, i.e., a 100% similarity

leads to 100% overlap between the corresponding Kronecker

hulls. Hence, the overlap may indicate some level of similarity.

II. Consider two graphs to be similar, when they both belong

to similar categories of networks (e.g., a social network is

similar to a collaboration network) and dissimilar, otherwise.

Our discussion in Section VII-B showed that when networks

belong to dissimilar categories, there is little to no overlap

between their Kronecker hulls. For instance, a road network

in our dataset will have no overlap with a random network

from any other category, while a social network is expected

to have some overlap with a collaboration network.

III. Consider two networks to be similar, when they are

semantically similar, e.g., both are video sharing networks.

Here, we assume semantic similarity leads to some level of

network structure similarity. We show that Kronecker hulls

can capture some level of semantic (dis) similarity by taking

social networks as an example. Table V lists the overlap

between the Kronecker hulls of each pair of the eight social

networks. We make the following observations: (1) various

similar networks exhibit overlap. For example, Brightkite and

Gowalla, both location-based social networks, overlap. Also,

MySpace, YouTube and Flixster are well connected to each

other, which may be explained by the content they share.

MySpace has a strong music emphasis, and YouTube and

Flixster are often used to share videos or music; and (2) social

networks popular in specific countries (e.g., Orkut and Hyves)

are well separated from other networks.

We believe these observations motivate a systematic study

on the connection between graph similarity and overlap of

Kronecker hulls, which we leave as part of our future work.

VIII. RELATED WORK

In addition to related research discussed throughout the

paper, our work has links to the following areas:

I. Network Visualization. Network visualization [27] aims to

visualize large-scale networks in real-time to facilitate easy

network exploration or specific applications, e.g., detecting
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users with expertise [28]. Network shapes provide a compact

and interpretable way to visualize a network and its subgraphs.

II. Graph Compression. There has been an increasing in-

terest in graph compression [29]–[31], especially in large-

scale real-world networks. Storing the network shape provides

an alternative compact solution to graph compression. In our

experiments on graphs with millions of nodes, Kronecker hulls

can often be represented with less than 40 boundary points.

IX. CONCLUSIONS

We propose network shapes and a linear algorithm to

construct one type of network shapes: Kronecker Hulls. A

Kronecker hull represents a network as a convex hull. Kro-

necker hulls are compact, easy to visualize, and capture various

properties of a network and its subgraphs. Kronecker hulls can

be used in applications such as categorizing graph (e.g., is the

network biological or social?) or to assess graph similarity.

Our study could be extended, empirically or theoretically, by

designing other types of networks shapes, i.e., by extending the

three general steps of network shapes: (1) sampling a graph,

(2) mapping a graph to a 3D point, and (3) fitting a shape to a

set of 3D points. For sampling, we use random node sampling.

Investigating random edge sampling or random walks may

lead to shapes that capture different network properties. For

mapping a graph to a 3D point, we use stochastic Kronecker

graphs. One can investigate other embedding techniques such

as [9], [32], [33], or design other shape-specific embedding

techniques with theoretical guarantees. Finally, we represent

shapes as convex hulls. Other compact means to represent

shapes, e.g, spheres, may enable further applications.

As for applications, exploring the possibility of using net-

work shapes in various network tasks, e.g., community detec-

tion or anomaly detection may lead to interesting discoveries.
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